
Quantum Computing and
Quantum Information

An Expository Manuscript

A Symphony of Theoretical Computer Science and Quantum Physics

by
S. Padmapriya and Nishkal Rao

Indian Institute of Science Education and Research (IISER) Pune

November 2025

© S. Padmapriya, Nishkal Rao 2025
Quantum Computing and Quantum Information
All rights reserved. Except as permitted under copyright law, no part of this expository
manuscript may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means (electronic, mechanical, photocopying, recording, or otherwise). The contents
may be freely cited, provided appropriate credit is given to the authors.

To our parents and teachers

Preface

Teaching is the best form of learning, and when passion meets perseverance, surprising
results occur. This work is one such result of a passion project in the pursuit of knowledge
and love for teaching.

There are many quantum computing and quantum information textbooks, covering the vast
and deep aspects of this subject and its intricate interdisciplinary nature. It is easy for a
first-time learner to get lost in this ocean of knowledge. So did we when we started learning
this beautiful subject. As an attempt to navigate through this ocean, we decided to cu-
rate and bring together the vast topics in an easy-to-understand and concise form, leading
to the writing of this expository manuscript. Additionally, the Quantum Information and
Computing course at our institute was a primary factor that intrigued and motivated us to
write this text. As students and budding researchers ourselves, we understand the struggles
and natural questions that arise while learning this subject. In this text, we have made
our best attempts to clarify these subtle details and give a flavour of this interdisciplinary
subject to anyone, irrespective of their background, provided the reader is comfortable with
elementary linear algebra and high school mathematics. This has been a series of consistent
efforts in bringing out an extremely comprehensive review of necessary and relevant topics in
the broad field of quantum computing and quantum information, in order to provide a head
start to early-career researchers, and to attempt to tackle foundational problems in the field.

This text requires dedicated reading and is not meant as a casual introduction to quantum
computing and information. It is ideally suited for undergraduates, graduates, and probably
motivated high schoolers who want to gain an in-depth yet first-level exposure to the broad
field of quantum computing and quantum information theory. This text does not elaborate
on experimental aspects and technological developments of the field. We hope that after
reading this text, one will be able to delve deeper into any particular topic in quantum
computing and quantum information.

Part I gives an overview of how truly interdisciplinary the field of quantum computing and
quantum information is, with topics spanning from pure mathematics, theoretical physics
and computer science. The first chapter is intended to be a quick recap of all the mathemat-
ical tools required to understand this text. The reader is expected to already know most of
these, especially matrix and linear algebra. If not already familiar, there are many amazing
and standard resources available to learn these topics. (Refer to Linear algebra done right

1

2 Nishkal Rao & S. Padmapriya

by Sheldon Axler, or the lectures by Gilbert Strang).

The second chapter sets the stage and provides the necessary background for readers from
mathematics, computer science, engineering or any other background who are not familiar
with quantum physics. If the reader is already familiar with undergrad-level abstract alge-
bra and quantum mechanics, then they can skip the first two chapters of Part I. However,
reading these chapters may provide a quick revision and also present these concepts through
a new lens.

The third chapter provides the necessary theoretical computer science background, covering
topics primarily in computational complexity theory. Even if the reader is familiar with
complexity theory, we encourage them to take a look at this chapter as it touches upon
quantum complexity theory alongside the relatively familiar classical complexity theory.

The final chapter of Part I introduces qubits, the fundamental unit of quantum information,
serving as the quantum analogue of the classical bit. It lays out the essential concepts and
overarching themes of quantum computing and information from functional and historical
perspectives. With this foundation, readers are free to explore any chapter from Parts II
and III in any order they prefer, as each chapter is self-contained and independent, rather
than hierarchically structured. This makes the text equally suitable for readers interested
in gaining a broad overview, focusing on a specific topic within quantum computing and
quantum information.

For readers who wish to learn independently and work through the entire textbook, we
recommend following the chapters in the order presented.

Part II of the text covers topics in quantum computing from basic quantum algorithms to
sophisticated algorithms like Shor’s prime factoring algorithm that can break the classically
secure RSA cryptosystems and Grover’s search algorithm that can search in an unstructured
database faster than its classical counterpart.

Part III, the last part, talks about quantum information, including topics from quantum
error correction. Both Part II and Part III have a lot of visual elements, presenting each
topic in an intuitive and pedagogical form. We have made an effort to naturally build the
concepts from the ground up rather than directly presenting them. Throughout these two
parts, wherever necessary, we have drawn detailed parallels to classical computer science to
appreciate the similarities and differences in both these worlds.

Although we have not included exercises, this text offers a concise yet substantial founda-
tion for anyone seeking to build a strong theoretical understanding in a relatively short read.
Readers can use it to acquire the necessary background and then practice with problems
from other well-known texts on quantum computing and information. Beyond self-study,
this text also serves as an ideal companion for any quantum computing or information
course. As part of a course throughout the semester, we managed to cover the various
aspects that were taught to us, and presented newer insights and perspectives that we be-
lieve would help grasp some of the intricacies and inner understandings that make this field

Quantum Computing & Quantum Information 3

extremely interesting.

We have further provided additional references through footnotes, leading to research ma-
terial, for the interested reader. We have built some examples through boxes, where we
provide a natural, geometric, and intuitive visualisation of some concepts. Additionally, we
ensured to have all illustrations generated through LATEX, to ensure that we can convey
information through maximum flexibility, and enhance the readability of the text.

Despite having revised and refined this text multiple times, there is always room for im-
provement. We welcome your feedback. Please feel free to contact the authors with
any suggestions or report any errors you may find. We plan to continue updating this
expository manuscript, and the latest version will always be available on the website:
https://o-qcblog.github.io/QIQC/.

Happy learning!

1√
2

[
|Nishkal Rao⟩ ⊕ |S. Padmapriya ⟩

]

Contact Details:

Nishkal Rao: � https://nishkalrao20.github.io/ �
S. Padmapriya: � https://padmapriya-s1.github.io/ �

� https://o-qcblog.github.io/ �

https://o-qcblog.github.io/QIQC/
https://nishkalrao20.github.io/
mailto:nishkal.rao@students.iiserpune.ac.in
https://padmapriya-s1.github.io/
mailto:s.padmapriya@students.iiserpune.ac.in
https://o-qcblog.github.io/
mailto:quantaoncomputing@gmail.com

4 Nishkal Rao & S. Padmapriya

Acknowledgments

The authors express immense gratitude to Dr. Sreejith GJ, Department of Physics, IISER
Pune, for his exceptional teaching in the Quantum Information and Computing course,
which inspired us to write this expository manuscript. His constant encouragement and sup-
port in meticulously reviewing this text, along with his valuable suggestions, have greatly
enhanced it. Also, thanks to Dr. T.S. Mahesh, Chair of Physics at IISER Pune, and Dr.
Anirban Hazra, Department of Chemistry, IISER Pune, whose courses helped give a holistic
view of the subject and related domains, and indirectly added value to this text.

Padmapriya wishes to thank Dr. Rajat Mittal from CSE, Indian Institute of Technology
(IIT) Kanpur, Dr. M.S. Santhanam, Department of Physics, IISER Pune, and Dr. Soumen
Maity, Chair of Mathematics at IISER Pune, for their support in encouraging research
projects on quantum computing and related areas of theoretical computer science.

Additionally, this work would not have been possible without the wonderful support of
our parents, siblings, and friends. Finally, the authors want to thank each other for the
incredible fun they had during the journey of writing this text.

5

6 Nishkal Rao & S. Padmapriya

Navigation

Among the excellent resources for Quantum Computing and Quantum Information, here
are some introductory resources that we have referred to and been inspired by.

• Quantum Computation and Quantum Information, Textbook by Isaac Chuang and
Michael Nielsen
A foundational introduction to key concepts in quantum computing, highlighting no-
table aspects of quantum algorithms, quantum information, and quantum error cor-
rection.

• Quantum Information and. Computation., Lecture Notes for Physics 229 by John
Preskill
A comprehensive and insightful resource for understanding quantum computing and
quantum information theory.

• Principles of Quantum Computation And Information; Textbook by Giuliano Benenti,
Giuliano Strini, Giulio Casati
Comprehensive two-volume companion designed to enhance understanding of quantum
computing through clear pedagogical insights and engaging problems.

• Quantum Computer Science: An Introduction; Textbook by David Mermin
Beautiful introduction to various aspects of quantum computing. Beware of the QBits,
though!

• Quantum Computing Since Democritus; Textbook by Scott Aaronson
A philosophical understanding of quantum computing based on complexity, offering
valuable insights into physics, mathematics, and theoretical computer science.

• Dancing with Qubits: How Quantum Computing Works and how it Can Change the
World; Textbook by Robert S. Sutor
Modern introduction to the concepts in quantum computing and the engineering as-
pects of the physical theory.

• Quantum Computing, Lecture Notes by Rajat Mittal
A concise theoretical computer science and mathematical perspective on quantum
computation targeted at an audience lacking a physics background.

7

8 CONTENTS

Contents

I Foundations 17

1 Mathematical Background 19
1.1 Probability Theory . 19
1.2 Linear Algebra . 21
1.3 Group Theory . 25
1.4 Fourier Transformation . 26
1.5 Group Theoretic Perspective on Fourier Transform 27
1.6 Number Theoretic Foundations . 28
1.7 Linear and Semidefinite Programming . 29

2 Physics Formalism 33
2.1 Postulates of Quantum Mechanics . 33
2.2 State Vector . 34
2.3 Entanglement . 35
2.4 Measurement . 35
2.5 State Vector vs Density Matrix . 36
2.6 Density Matrix Formalism . 37
2.7 Reduced Density Operator . 40

3 Theory of Computation 43
3.1 Turing Machine . 43
3.2 Circuit Model of Computation . 45
3.3 RAM Model of Computation . 45
3.4 Bird’s Eye View of Complexity Theory . 46
3.5 Church-Turing Thesis . 47

4 Overview of Quantum Computer and Quantum Information 49
4.1 Qubit . 49
4.2 Multi Qubits . 52
4.3 Gates and Circuits . 53
4.4 Reversible Computation . 56
4.5 Quantum Parallelism . 59
4.6 No-Cloning Theorem . 60
4.7 Building a Qubit . 61

CONTENTS 9

II Quantum Computing 67

5 Basic Quantum Algorithms 69
5.1 Some Basic Functions . 69
5.2 Deutsch’s Problem . 72
5.3 Deutsch–Jozsa Problem . 78
5.4 Bernstein Vazirani Problem . 79
5.5 Simon’s Problem . 82

6 Quantum Fourier Transform and Shor’s Algorithm 87
6.1 RSA Cryptography . 87
6.2 Overview of Shor’s Algorithm . 89
6.3 Shor’s Algorithm . 90
6.4 How complex is Shor’s Algorithm? . 102
6.5 Quantum Phase Estimation . 102

7 Grover’s Search Algorithm 107
7.1 Introduction . 107
7.2 Query Model of Computation . 107
7.3 Grover’s Search Algorithm . 110
7.4 Query complexity of Grover’s Search Algorithm 113

8 Variational Quantum Algorithms 117
8.1 Variational Theorem . 117
8.2 Quantum Approximation Optimisation Algorithm 119
8.3 QAOA for Graph Theoretical Optimisation Problems 120
8.4 Max Cut . 121
8.5 Max Independent Set (MIS) . 125

III Quantum Information 129

9 Generalising Operations 131
9.1 Preliminaries . 131
9.2 Kraus Representation . 133
9.3 Generalised Measurements . 140

10 Quantum Entropy 143
10.1 Shannon Entropy . 143
10.2 Classical Data Compression . 145
10.3 Von Neumann Entropy . 148
10.4 Quantum Data Compression . 153

11 Exploiting Quantum Entanglement 157
11.1 Introduction . 157
11.2 Local Operations Classical Communication 157
11.3 Majorization . 162

10 CONTENTS

11.4 Entanglement Transformations . 162

12 Quantum Error Correction 169
12.1 Introduction . 169
12.2 Essential features of Quantum Error Correction 170
12.3 Shor’s Code . 179
12.4 Formalisms . 184
12.5 Surface Codes . 192

Conventions

Basic Mathematical Notations

N The set of natural numbers {1, 2, 3, . . . }
Z The set of integers {. . . ,−2,−1, 0, 1, 2, . . . }
Q The set of rational numbers
R The set of real numbers
C The set of complex numbers
[n] The set {1, 2, . . . , n}
ϕ The empty set
∈, /∈ Element / not an element of a set
⊆, ⊂ Subset / proper subset
∪, ∩, \ Union, intersection, set difference
|S| Cardinality (size) of set S
⌈x⌉, ⌊x⌋ Ceiling, floor of real x
n! Factorial of n: n! = 1 · 2 · · ·n(
n
k

)
Binomial coefficient, number of k-subsets of an n-set∑n

i=1,
∏n
i=1 Summation and product

lim
n→∞

Limit
det(A) Determinant of matrix A
∥x∥p p-norm of vector x (for p ≥ 1)
δij Kronecker delta: 1 if i = j, 0 otherwise
1A Indicator function of event/set A (1A(x) = 1 if x ∈ A, else 0)
⊕ Direct sum or bitwise XOR (meaning clarified where used)
|S|2 Euclidean (or ℓ2) norm
⇒, ⇐⇒ Implication and equivalence
∀, ∃, ∃! Universal, existential, unique-existence quantifiers
⟨a, b⟩ Inner product between a and b

11

12 Conventions

Dirac Notation
As mathematicians and physicists work with concepts, we need a concise way of conveying
what they mean. Good notation can make a statement or a proof much clearer and more
insightful to the reader. Over time, the symbols and expressions that prove to be most
useful win out while the others fade away into the archives. In the case of Dirac’s bra-ket
notation, it has become ubiquitous across quantum mechanics and now quantum computing.

Vectors can come in many flavours, as v = (v1, v2, . . . , vn) as a tuple (useful for our computer

scientists), equivalently, v =
[
v1 v2 · · · vn

]
as a row vector, v =




v1
v2
...
vn


 as a column vector

(daunting form in physics textbooks). While quantum mechanics is centrally captured by
linear algebra, we would be needing extensive use of vectors. To add on to the flavours, let
us introduce two more invented by Paul Dirac1, a theoretical physicist, that we proceed to
use extensively further.
Given a vector v = (v1, v2, . . . , vn), we denote by ⟨v|, the bra-v, is defined as

⟨v| =
[
v∗

1 v∗
2 · · · v∗

n

]

where we take the complex conjugate of each entry. For a vector w = (w1, w2, . . . , wm), we
have the ket-w, given by

|w⟩ =




w1
w2
...
wm




as the column vector without conjugations.

Inner Product
When n = m for same dimensions, we can conjunct the notation for the inner product of
the vectors v and w, as

⟨v|w⟩ =
[
v∗

1 v∗
2 · · · v∗

n

]




w1
w2
...
wm


 = v∗

1w1 + v∗
2w2 + . . . v∗

nwn

1If you read Dirac’s Principles of Quantum Mechanics, he says to assume the correspondence between
a ket and the corresponding bra, which is actually a central area of study called the Riesz Representation
Theorem, which Dirac assumed as obvious to the readers. He has no mention of it in his book, and we
will respect his legacy by doing the same. That being said, this is the same man who remained completely
silent after a student said, "I don’t understand the second equation," during a lecture. After being asked why
Dirac didn’t answer the student’s question, Dirac said, "That was not a question, that was a statement." The
interested reader can refer to "Meaning of Riesz representations in a layman’s term?" a Math StackExchange
post for further insight.

https://math.stackexchange.com/a/3670861
https://math.stackexchange.com/a/3670861

Conventions 13

which will be very helpful in further discussions. The norm of a vector denoting its length
can be seen, thereby as

||v|| =
√

⟨v|v⟩ =
√

|v1|2 + |v2|2 + · · · + |vn|2

This is why we have the complex conjugates, so that complex numbers can give the norm.

Outer Product
Further, we will be requiring the notion of the outer product wherein we have the operation,

|w⟩⟨v| =




w1
w2
...
wm



[
v∗

1 v∗
2 · · · v∗

n

]
=




w1v
∗
1 w1v

∗
2 · · · w1v

∗
n

w2v
∗
1 w2v

∗
2 · · · w2v

∗
n

...
...

wnv
∗
1 wnv

∗
2 · · · wnv

∗
n




14 Conventions

Asymptotic Notation
Asymptotic notation is used to compare and understand the behaviour of real-valued func-
tions having a positive integer domain as the input grows large. We will be using it exten-
sively to compare and analyse the scale of algorithms in the classical and quantum settings
to help us demarcate the separation and understand the quantum advantage.

Consider two functions f(x) and g(x) that map positive integers to positive real numbers.
Then the asymptotic notations are defined as follows:

Big O-notation
f(x) is said to be big-O of g(x), denoted as O(g(x)), if there exists a constant c > 0 and a
positive integer constant x0 such that,

f(x) ≤ cg(x) ∀x ≥ x0

=⇒ f(x) ∈ O(g(x))

As an abuse of notation, it is a common practice to write this as f(x) = O(g(x)).

When g(x) is non-zero, the above statement is equivalent to,

lim
n→∞

sup f(x)
g(x) < ∞

=⇒ f(x) ∈ O(g(x))

Big Ω-notation
f(x) is said to be big-Omega of g(x), denoted as Ω(g(x)) if there exists a constant c > 0
and there exists a positive integer constant x0 such that,

f(x) ≥ cg(x) ∀x ≥ x0

=⇒ f(x) ∈ Ω(g(x))

Also denoted as f(x) = Ω(g(x)).

When g(x) is non-zero, the above statement is equivalent to,

lim
n→∞

inf f(x)
g(x) > 0

=⇒ f(x) ∈ Ω(g(x))

Θ-notation
Θ-notation gives a tight bound. We say f(x) = Θ(g(x)) when f(x) is both Ω(g(x)) and
O(g(x)).

Conventions 15

Õ-notation
Õ-notation is used to hide the logarithmic factors, that is, if f(x) = Õ(g(x)) implies f(x) =
(log x)cg(x), where c can be any real number.

Little o-notation
f(x) is said to be little-o of g(x), denoted as o(g(x)) if for every positive constant constant
c > 0 there exists a positive integer constant x0 such that,

f(x) ≤ cg(x) ∀x ≥ x0, c > 0
=⇒ f(x) ∈ o(g(x))

Also denoted as f(x) = o(g(x)). Little-o is used to denote a stronger statement, thus giving
a looser upper bound to a function compared to big-O, as the above should hold for every
c > 0 and not just a particular constant. In other words, g(x) grows much faster than f(x),
or f(x) grows much slower than g(x).

When g(x) is non-zero, the above statement is equivalent to,

lim
n→∞

f(x)
g(x) → 0

=⇒ f(x) ∈ o(g(x))

Little ω-notation
f(x) is said to be little-omega of g(x), denoted as ω(g(x)) if for every positive constant
constant c > 0 there exists a positive integer constant x0 such that,

f(x) ≥ cg(x) ∀x ≥ x0, c > 0
=⇒ f(x) ∈ ω(g(x))

Also denoted as f(x) = ω(g(x)). Little-omega is used to denote a stronger statement or
looser lower bound to a function compared to big-Omega, as the above should hold for every
c > 0 and not just a particular constant. In other words, f(x) grows much faster than g(x),
or g(x) grows much slower than f(x).

When g(x) is non-zero, the above statement is equivalent to,

lim
n→∞

f(x)
g(x) → ∞

=⇒ f(x) ∈ ω(g(x))

16 Conventions

x

f(x)

O()

o()

Ω()

ω()

Figure 1: Asymptotic Notation

Part I

Foundations

17

Chapter 1

Mathematical Background

“If all of mathematics disappeared, physics would be set back by exactly one week.”
– Richard Feynman, Lecture at Caltech, Pasadena

“Precisely the week in which God created the world.”
– Mark Kac, Enigmas of Chance

1.1 Probability Theory

At its core, quantum mechanics is a probabilistic theory1, meaning that it predicts the likeli-
hood of different outcomes for a given measurement. The interpretation of these probabilities
has been a subject of debate among physicists and philosophers for decades. We provide a
concise recap of basic probability theory to address problems in quantum mechanics further:

1. Conditional probability: Let A and B be two events

P [A|B] := P (A ∩B)
P (B)

2. Partition formula: Given A and disjoint partition B1, B2 . . . Bm of sample space,

P (A) =
m∑

i=1
P (Bi)P [A|Bi]

3. Bayes rule:

P [A|B] = P [B|A]P (A)
P (B)

1Refer "Where Quantum Probability Comes From", a Quantamagazine article for a very interesting
insight.

19

https://www.quantamagazine.org/where-quantum-probability-comes-from-20190909/

20 Probability Theory

4. Random variable: Given sample space Ω of an experiment, a random variable is a
function X : Ω → R. In general, the range of a random variable X need not be real;
it could be any other set with more structure (like real numbers are ordered; they can
be added, multiplied, etc.)

5. Probability mass function: Given a probability function P on Ω, it can be naturally
extended to the probability of the random variable,

PX(x) := P (X = x) =
∑

w:X(w)=x

P (w)

This is the probability mass function of a random variable. The joint probability mass
function is defined to be PX,Y (x, y) := P (X = x and Y = y)

6. Expectation E[X] :=
∑
x∈R P (X(w) = x)x whereR is the range of the random variable

X. The expectation is linear, that is E[aX + bY] = aE[X] + bE[Y].

7. Variance: V ar[X] := E[(X − E[X])2] = E[X2] − (E[X])2. Standard deviation is the
square root of variance. If Y = aX, where X is a random variable, then V ar[Y] =
a2V ar[X].

8. Let {Xi}ni=1 be pairwise independent family of random variables. Then,

V ar

[
n∑

i=1
Xi

]
=

n∑

i=1
V ar[Xi]

9. Inclusion-exclusion principle:

P


 ⋃

i∈[n]

Ai


 =

∑

S⊆[n],S ̸=ϕ
(−1)|S|+1P

(⋂

i∈S
Ai

)

10. Union Bound: When we have a lot of events, it becomes hard to calculate the proba-
bility of their unions using the inclusion-exclusion principle. In these cases, a simple
union bound can be used to upper bound the probability of their union.

P


 ⋃

i∈[n]

Ai


 ≤

∑

i

P (Ai)

1.1.1 Law of large numbers
Let the random experiment be modelled by a random variable X. Suppose the experiment is
repeated n times. Denote X1, X2, · · · , Xn to be n copies of X (they have the same distribu-
tion). We also assume that the family of random variables {Xi}ni=1 is pairwise independent
(any two random variables are independent).

Mathematical Background 21

The intuition is, as n gets bigger, the average value of X1, X2, · · · , Xn should be close to
E[X]. So, define a new random variable,

X =
∑n
i=1 Xi

n
.

Hence, X is the average of n repetitions of X (as a random variable). By linearity of
expectation E[X] = E[X].

Theorem 1.1.1. Weak law of large numbers Define the random variable X =
∑n

i=1
Xi

n ,
where each Xi has the same distribution as a random variable X and are pairwise indepen-
dent. Then,

P (|X − E[X]| ≥ a) ≤ V ar[X]
na2

1.2 Linear Algebra
Linear algebra provides the language of quantum mechanics. Its concepts, from vector
spaces to eigenvalue decompositions, allow us to rigorously formulate and manipulate the
state spaces of quantum systems.

1.2.1 Vector Spaces and Inner Product Spaces
Definition 1.2.1 (Vector Space). A vector space V over a field F is a set equipped with two
operations: vector addition and scalar multiplication. These operations satisfy the following
axioms for all u,v,w ∈ V and all scalars a, b ∈ F:

1. Associativity of Addition: (u + v) + w = u + (v + w).

2. Commutativity of Addition: u + v = v + u.

3. Existence of Zero: There exists a unique zero vector 0 ∈ V such that u + 0 = u.

4. Existence of Additive Inverses: For every u ∈ V , there exists a vector −u such
that u + (−u) = 0.

5. Distributivity: a(u + v) = au + av and (a+ b)u = au + bu.

6. Compatibility: a(bu) = (ab)u.

7. Identity: 1u = u, where 1 is the multiplicative identity in F.

Definition 1.2.2 (Inner Product Space). An inner product space is a vector space V
endowed with an inner product ⟨·, ·⟩ : V × V → F satisfying:

1. Conjugate Symmetry: ⟨u,v⟩ = ⟨v,u⟩.

2. Linearity in the First Argument: ⟨au + bv,w⟩ = a⟨u,w⟩ + b⟨v,w⟩.

3. Positive-Definiteness: ⟨u,u⟩ ≥ 0, with equality if and only if u = 0.

22 Linear Algebra

1.2.2 Linear Operators and Spectral Decomposition
The study of linear operators, particularly those that act on finite-dimensional inner prod-
uct spaces (Hilbert spaces), reveals the structure behind quantum evolution. In quantum
mechanics, operators such as the Hamiltonian or measurement observables are Hermitian,
ensuring real eigenvalues and a well-behaved spectral decomposition.

Definition 1.2.3 (Linear Operator). A mapping A : V → V is called a linear operator if
for all u,v ∈ V and scalars c ∈ F, we have

A(cu + v) = cA(u) + A(v).

Definition 1.2.4 (Hermitian Operator). A Hermitian operator is a linear operator that is
self-adjoint, that is, A is Hermitian when A = A†. Where A† is the conjugate transpose of
A.

Theorem 1.2.1 (Spectral Theorem for Hermitian Operators). Let A be a Hermitian oper-
ator acting on a finite-dimensional inner product space. Then there exists an orthonormal
basis of V consisting of eigenvectors of A, and the operator can be expressed as

A =
∑

i

λiPi,

where λi ∈ R are the eigenvalues and Pi are the orthogonal projection operators onto the
corresponding eigenspaces.

Example 1.2.1. Consider the operator

A =
(

2 1
1 2

)

acting on R2. A straightforward calculation shows that its eigenvalues are λ1 = 3 and
λ2 = 1, with corresponding normalized eigenvectors. The spectral decomposition then takes
the form

A = 3P1 + 1P2,

which reveals the underlying structure of A in a clear and elegant way.

The spectral theorem tells us that every Hermitian operator can be "diagonalized" by choos-
ing an appropriate basis. This is analogous to expressing a musical chord as a combination of
pure tones, with each eigenvalue representing a "note" of the operator, and the corresponding
eigenvectors provide the "directions" in the space along which these notes resonate.

1.2.3 Singular Value Decomposition (SVD)
The Singular Value Decomposition (SVD) is a powerful factorization method that generalizes
the spectral decomposition to any (possibly non-square) matrix. In the context of quantum
computing, SVD is instrumental in understanding state transformations and noise processes.

Mathematical Background 23

Theorem 1.2.2 (Singular Value Decomposition). For any m × n matrix M, there exist
unitary matrices U (of size m×m) and V (of size n× n) such that

M = UΣV†,

where Σ is an m× n diagonal matrix with non-negative real numbers (the singular values)
on the diagonal.

Example 1.2.2. Let’s look at the matrix

M =




1 0
0 2
0 0




This matrix takes a 2D vector (since it has 2 columns) and transforms it into a 3D vector
(since it has 3 rows). The SVD of this matrix is

M =




0 1 0
1 0 0
0 0 1




︸ ︷︷ ︸
U




2 0
0 1
0 0




︸ ︷︷ ︸
Σ

(
0 1
1 0

)†

︸ ︷︷ ︸
V†

Let’s understand the components: In this specific case, V is the matrix that swaps the
standard basis vectors.

V =
(

0 1
1 0

)

This is a simple rotation and reflection matrix. Since it’s a real matrix, the dagger operation
is just the transpose, so V† = V. When we apply V† to an input vector, it swaps its

components. For example, it rotates the vector
(

1
0

)
to
(

0
1

)
.

U is a 3 × 3 unitary matrix.

U =




0 1 0
1 0 0
0 0 1




This matrix also performs a rotation in 3D space. Specifically, it swaps the first two coor-
dinates of a vector, which corresponds to a rotation in the output space.
The SVD reveals the core action of M. The transformation first swaps the input components
(V†), then stretches the new second component by 2 and the new first component by 1 (Σ),
and finally swaps these first two components in the 3D output space (U). The magic of SVD
is that it finds the exact "input" and "output" bases (V and U) where the transformation is
just a simple scaling (Σ).

SVD can be seen as a “best possible” diagonalization of any matrix. Imagine reshaping an
arbitrary transformation into a rotation (via V†), followed by a scaling (via Σ), and then
another rotation (via U). This perspective is particularly useful in quantum information,
where one often needs to analyze the effect of noise or perform optimal approximations of
unitary evolutions.

24 Linear Algebra

1.2.4 Polar Decomposition
Think of any quantum process, from a perfect, idealized gate to a noisy, real-world inter-
action, as a linear transformation acting on a quantum state. The Polar Decomposition
provides an essential and deeply intuitive way to dissect any such transformation.

It elegantly separates the process into two fundamental and distinct actions: a pure rotation
(represented by the unitary operator U), which preserves the geometric relationships within
the quantum state space, and a pure stretch or deformation (represented by the positive
operator J). This separation is invaluable in quantum information because it allows us to
isolate the ideal, coherent part of an evolution from its non-unitary components, which of-
ten correspond to noise or measurement effects. Its most vital application is in finding the
closest ideal quantum gate (U) to an actual, imperfect experimental operation, making it an
indispensable tool for analyzing gate fidelity and designing error-resilient quantum controls.

Polar decomposition says that every linear operator can be decomposed as a unitary and a
unique positive operator.

Theorem 1.2.3 (Polar Decomposition). Given a linear operator A on a vector space V ,
there exists unitary U and unique positive matrices J ≡

√
A†A and K ≡

√
AA† such that

A = UJ = KU

If A is invertible, then U is also unique.

Proof. J as defined in the theorem is a positive operator, so by spectral decomposition it
can be written as J =

∑
i λi |i⟩. Define |ϕi⟩ = A |i⟩. Notice that ⟨ϕi|ϕi⟩ = λ2

i , so |ϕi⟩ /λ2
i

(when λi ̸= 0) is a unit vector, call it |ei⟩. By the Gram-Schmidt process, we can extend
the basis as {ei} to form an orthonormal basis.

Define U =
∑
i |ei⟩ ⟨i|. Consider the action of UJ on any eigen vector |i⟩ with non-zero

eigenvalue λi,
UJ |i⟩ = λiU |i⟩ = λi |ei⟩ = |ϕi⟩ = A |i⟩

For λi = 0,
UJ |i⟩ = 0 = |ϕi⟩

Thus, the action of UJ on the basis vectors is the same as that of A. So we have A = UJ .

A† = JU†, so A†A = J2, giving J a unique value
√
A†A. When A is invertible J also is

invertible, thus giving U = AJ−1 uniquely. Similar arguments can be used to show A = KU
as well.

1.2.5 Positive Semidefinite Matrix
Definition 1.2.5 (Positive Semidefinite Matrix). A n × n matrix M is called positive
semidefinite if ∀x ∈ Rn, xTMx ≥ 0.

Theorem 1.2.4. The following are equivalent,

Mathematical Background 25

1. M is positive semidefinite

2. All eigenvalues of M are non-negative

3. ∃B a m× n matrix (m ≤ n) such that M = BTB

1.3 Group Theory
Group theory provides the language of symmetry that is pervasive in both classical and
quantum systems. Its axioms encapsulate the essence of symmetry operations, which are
central to understanding quantum dynamics and computational processes.

1.3.1 Fundamental Definitions
Definition 1.3.1 (Group). A group (G, ∗) is a set G together with a binary operation
∗ : G×G → G satisfying:

1. Closure: For every a, b ∈ G, the product a ∗ b is in G.

2. Associativity: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).
3. Identity: There exists an element e ∈ G such that for every a ∈ G, e ∗ a = a ∗ e = a.

4. Inverses: For each a ∈ G, there exists an element a−1 ∈ G such that a ∗ a−1 =
a−1 ∗ a = e.

Definition 1.3.2 (Abelian Group). A group G is called abelian (or commutative) if, in
addition to the group axioms, it satisfies

a ∗ b = b ∗ a for all a, b ∈ G.

Remarks. Generally, as a shorthand, the group operation symbol is dropped. That is, g ∗h
is written as gh.

1.3.2 Subgroups, Cosets, and Normality
Understanding substructures within a group allows us to analyze and decompose complex
symmetry operations.

Definition 1.3.3 (Subgroup). A non-empty subset H ⊆ G is a subgroup of G if H is itself
a group under the operation inherited from G. We denote this by H ≤ G.

Theorem 1.3.1 (Lagrange’s Theorem). If G is a finite group and H is a subgroup of G,
then the order (number of elements) of H divides the order of G.

Definition 1.3.4 (Normal Subgroup). A subgroup N ≤ G is normal (denoted N ◁ G) if it
is invariant under conjugation; that is, for every n ∈ N and every g ∈ G, we have

gng−1 ∈ N.

Normal subgroups allow the construction of quotient groups, which capture the idea of sym-
metry modulo some invariant structure.

26 Fourier Transformation

1.3.3 Cyclic Groups and Group Homomorphisms
Cyclic groups are the simplest examples of groups, serving as building blocks for more
intricate symmetry operations.

Definition 1.3.5 (Cyclic Group). A group G is cyclic if there exists an element g ∈ G such
that every element in G can be written as a power of g, i.e.,

G = {gn | n ∈ Z}.

Such an element g is called a generator of G.

Example 1.3.1. The group (Z/nZ,+) is cyclic, with 1 (or any element coprime to n)
serving as a generator. This example illustrates how modular arithmetic naturally leads to
cyclic group structures.

A deeper understanding of group structure is achieved via homomorphisms.

Definition 1.3.6 (Group Homomorphism). A map φ : G → H between two groups (G, ·)
and (H, ∗) is a group homomorphism if for all a, b ∈ G,

φ(a · b) = φ(a) ∗ φ(b).

Homomorphisms preserve the algebraic structure, allowing us to relate different groups
through their shared symmetries.

1.4 Fourier Transformation
Fourier transformation is a fundamental tool that decomposes functions into their con-
stituent frequency components. In both classical and quantum contexts, it enables us to
switch between time (or spatial) representations and frequency domains. This dual per-
spective is not only mathematically elegant but also pivotal in quantum algorithms such as
Shor’s algorithm.

For a function f : R → C, the Fourier transform is defined as

f̂(ξ) =
∫ ∞

−∞
f(x)e−2πixξ dx.

The inverse Fourier transform recovers the original function:

f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ.

Think of the Fourier transform as a way to “listen” to the hidden frequencies within a
signal. Just as a musical chord can be decomposed into individual notes, any function can
be expressed as a sum (or integral) of sinusoidal components. In quantum mechanics, this
idea underpins the relationship between position and momentum representations.

Mathematical Background 27

1.5 Group Theoretic Perspective on Fourier Transform
The Fourier transform can be generalized to functions defined on groups, revealing deep
connections between harmonic analysis and group theory. This perspective is especially
fruitful in quantum computing, where symmetries play a central role in algorithm design.

1.5.1 Fourier Transform over Abelian Groups
For a finite Abelian group G, the Fourier transform decomposes a function f : G → C
into a sum over the group’s characters. A character χ is a homomorphism from G to the
multiplicative circle group C×.

Definition 1.5.1 (Fourier Transform on Finite Abelian Groups). Let G be a finite Abelian
group of order |G|. For a function f : G → C, its Fourier transform is defined as

f̂(χ) = 1√
|G|

∑

g∈G
f(g)χ(g),

for every character χ in the dual group Ĝ.

The inverse Fourier transform is given by

f(g) = 1√
|G|

∑

χ∈Ĝ

f̂(χ)χ(g).

In the Abelian case, the characters serve as the “frequency modes” of the group. They
allow us to express a function as a combination of these basic oscillatory components. For
example, in the cyclic group Zn, the characters are simple exponential functions, which
makes the discrete Fourier transform a natural tool for digital signal processing and quantum
algorithms.

Example 1.5.1. For the cyclic group G = Zn, the characters are given by

χk(j) = e2πikj/n, k, j ∈ {0, 1, . . . , n− 1}.

Thus, the Fourier transform on Zn becomes

f̂(k) = 1√
n

n−1∑

j=0
f(j)e−2πikj/n.

1.5.2 Fourier Transform over Non-Abelian Groups
When the group G is non-Abelian, the Fourier transform is extended by replacing characters
with the set of irreducible representations. For a finite non-Abelian group G, let {ρ} denote
the set of inequivalent irreducible representations of G, where each representation ρ : G →
GL(Vρ) maps group elements to matrices acting on the vector space Vρ.

28 Number Theoretic Foundations

Definition 1.5.2 (Fourier Transform on Finite Non-Abelian Groups). Let f : G → C be a
function. The Fourier transform of f at an irreducible representation ρ is defined by

f̂(ρ) =
∑

g∈G
f(g)ρ(g)†.

Here, f̂(ρ) is a matrix of dimension dim(ρ) × dim(ρ).
The inversion formula is given by

f(g) = 1
|G|

∑

ρ

dim(ρ) Tr
(
ρ(g)f̂(ρ)

)
,

where the sum is taken over all inequivalent irreducible representations of G.
In non-Abelian groups, the irreducible representations generalize the notion of frequency
modes. Instead of scalar oscillations, the decomposition yields matrix-valued components
that capture more complex symmetries. This richer structure is central in quantum algo-
rithms that exploit non-Abelian hidden subgroup problems or study symmetry properties
of quantum systems.
Example 1.5.2. Consider the symmetric group S3, one of the simplest non-Abelian groups.
It has three irreducible representations: two one-dimensional representations and one two-
dimensional representation. When applying the Fourier transform to a function on S3, the
one-dimensional representations yield scalar components, while the two-dimensional repre-
sentation provides a 2 × 2 matrix capturing the more intricate symmetry of the group.

1.6 Number Theoretic Foundations
The elegant machinery and beauty of number theory, particularly the properties of modular
arithmetic, provide the foundational framework for powerful algorithms, notably in cryp-
tography and quantum computation. We will be using the following beautiful definitions
and theorems in the chapters ahead, with a special emphasis on Shor’s breakthrough in
quantum computing.

1.6.1 Finite Groups Modulo N

Let (Z/nZ)× denote the multiplicative group of integers modulo N that are coprime to N .
Formally (Z/nZ)× = {a ∈ Z | 1 ≤ a < N and gcd(a,N) = 1}.
If n is not a prime, it has all elements of (Z/nZ) which are coprime with n. If n is prime,
(Z/nZ)× is the same as (Z/nZ). This set forms a group under multiplication moduloN , with
order φ(N), where φ is Euler’s totient function. This denotes the cardinality of numbers,
which are coprime to N .
Example 1.6.1. For N = 15, (Z/15Z)× = {1, 2, 4, 7, 8, 11, 13, 14} and φ(15) = 8.

Note that the Euler totient function is a multiplicative function, that is, if two numbers m
and n are relatively prime, that φ(mn) = φ(m)φ(n).
Example 1.6.2. For N = 3, (Z/3Z)× = {1, 2} and for (Z/5Z)× = {1, 2, 3, 4}. Note that
φ(3) × φ(5) = φ(15) = 8.

Mathematical Background 29

1.6.2 Order of an Element
Definition 1.6.1 (Order). The order of an element a ∈ (Z/nZ)× is the smallest positive
integer r such that: ar ≡ 1 mod N .

By Lagrange’s theorem, we emphasize that the order of the cyclic group generated by an
element a given by {1, a, a2, . . . , ar−1} such that ar = 1 mod N , divides the order of the
group, hence r divides φ(N).

1.6.3 Fermat-Euler Theorem
Theorem 1.6.1. (Fermat’s Little Theorem): For any a ∈ Z, p some prime,

ap ≡ a mod p.

Theorem 1.6.2. (Fermat-Euler): For any a ∈ (Z/nZ)×,

aφ(N) ≡ 1 mod N.

Euler’s theorem is a generalization of Fermat’s little theorem (For any prime φ(p) = p − 1
since there exist p − 1 numbers co-prime to p smaller than p, hence aφ(p) mod p ≡ ap+1

mod p ≡ 1 mod p, thereby ap ≡ a mod p), which can be understood from group theoretic
principles. Since the order of any element in (Z/nZ)× divides the order of (Z/nZ)×, we
have ar ≡ 1 mod N where r divides φ(N). Thereby we have φ(N) = rk for some k, then
aφ(N) mod N ≡ (ar)k mod N = 1 mod N .

1.7 Linear and Semidefinite Programming
Linear programming is a type of optimisation problem that has been extensively studied.
Optimising is to maximise or minimise a given objective function under given constraints.
In linear programming, the objective function and the constraints are linear functions. One
example of linear programming is given below:

maximize 3x1 + 2x2

subject to x1 + x2 ≤ 4,
x1 ≤ 2,
x2 ≤ 3,
x1, x2 ≥ 0.

When there is an additional constraint on the variables that demands they be integers, it
is called integer linear programming (ILP). It is a well-known fact that integer linear pro-
gramming is computationally intractable 2.

2Integer linear programming is an NP-complete problem. The paper Papadimitriou [1981] provides a
simple and elegant proof of the same. Also, one can find a standard reduction from ILP to 3-SAT given in
most algorithms or complexity theory textbooks.

30 Linear and Semidefinite Programming

Unfortunately, many day-to-day optimisation and combinatorial problems have a natural
integer linear programming formalism. To solve the problem efficiently, we give up on the
hope of finding the exact solution and remain satisfied with an approximate solution. We
do this by dropping the integer constraint, and this is called linear programming relaxation.
There are multiple efficient algorithms to now solve our linear program 3.

Semidefinite programming (SDP) is like an elder and stronger cousin of linear programming.
It belongs to a more general type of optimising problem, replacing the single-valued variables
in the linear programming setup with matrices. Below is an example of a semidefinite
program,

maximize ⟨C,X⟩ over X ∈ R2×2, X ⪰ 0
subject to ⟨I,X⟩ = 1,

where C =
[

0 1
1 0

]
, I =

[
1 0
0 1

]
.

Most of the time, one can also give a semidefinite programming relaxation to an integer
linear program. This can lead to a "better" approximate solution than the one given by
linear programming relaxation. In the later chapter 8, we will see an example of one such
problem (max cut problem) for which this is the case. The good news here is that there
are multiple algorithms to solve semidefinite programs efficiently 4!

3Like simplex and interior point algorithms etc. Read more in linear programming Wikipedia.
4Much like linear programming, there are similar techniques to solve SDPs. Refer to semidefinite pro-

gramming Wikipedia for more details.

https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Semidefinite_programming
https://en.wikipedia.org/wiki/Semidefinite_programming

Mathematical Background 31

Further Reading & References
Sheldon Axler. Linear algebra done right. Springer Nature, 2024.

Claude Cohen-Tannoudji, Bernard Diu, and Frank Laloe. Quantum mechanics, volume 1.
Quantum Mechanics, 1:898, 1986.

D.S. Dummit and R.M. Foote. Abstract Algebra. Wiley, 2003. ISBN 9780471433347. URL
https://books.google.co.in/books?id=KJDBQgAACAAJ.

Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman,
Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R.
Johnson, and Jay M. Gambetta. Quantum computing with Qiskit, 2024.

Seymour Lipschutz and Marc Lipson. Schaum’s outline of theory and problems of linear
algebra. Erlangga, 2001.

Rajat Mittal. Lectures on Quantum Computing. Indian Institute of Technology (IIT) Kan-
pur, 2023.

Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):
765–768, October 1981. ISSN 0004-5411. doi: 10.1145/322276.322287. URL https:
//doi.org/10.1145/322276.322287.

Sheldon Ross. A first course in probability 8th edition. Pearson, 2009.

Ramamurti Shankar. Principles of quantum mechanics. Springer Science & Business Media,
2012.

Gilbert Strang. Introduction to linear algebra. SIAM, 2022.

https://books.google.co.in/books?id=KJDBQgAACAAJ
https://doi.org/10.1145/322276.322287
https://doi.org/10.1145/322276.322287

32 FURTHER READING & REFERENCES

Chapter 2

Physics Formalism

“When searching for harmony in life, one must never forget that in the drama of
existence, we are ourselves both actors and spectators.”

– Niels Bohr, Discussions with Einstein

2.1 Postulates of Quantum Mechanics
Quantum mechanics, at its heart, is a framework for predicting the behaviour of the universe
at its smallest scales. While its implications can seem bizarre, the theory itself rests on a few
fundamental postulates. These postulates provide the language and machinery for describing
physical reality. Instead of merely stating them, let’s explore their physical meaning.

Postulate 1. States of a quantum system are associated with a unit vector in Hilbert space.

Everything we can possibly know about an isolated quantum system is encoded in a single
mathematical object: a state vector, denoted |ψ⟩. This vector lives in a special complex
vector space called a Hilbert space. Because probabilities must sum to one, this state
vector is always a unit vector (⟨ψ|ψ⟩ = 1). The power of this postulate is the principle of
superposition, if |ψ1⟩ and |ψ2⟩ are valid states, then so is their linear combination, α|ψ1⟩ +
β|ψ2⟩.

Postulate 2. Observables are associated with Hermitian operators on the system’s Hilbert
space.

Every measurable property of a system, like position, momentum, or spin, is represented by
a Hermitian operator acting on that system’s Hilbert space. The necessity for Hermitian
operators which are self adjoint, is because the outcome of any real-world measurement
must be a real number, and Hermitian operators are guaranteed to have real eigenvalues.

Postulate 3. States transform via unitary operations. The Schrodinger equation governs
time evolution.

33

34 State Vector

When we aren’t looking at it, a quantum system evolves in a perfectly smooth, continuous,
and deterministic way. This evolution is described by a unitary transformation. A state
|ψ(t1)⟩ evolves to |ψ(t2)⟩ = U |ψ(t1)⟩. A unitary transformation is essentially a rotation in
the Hilbert space that preserves the length of the state vector, ensuring that probabilities
continue to make sense over time.

Postulate 4 (Quantum Measurement). When observable A is measured on state |ψ⟩, the
set of outcomes is the set of eigenvalues of A given by {ai}.
i) The probability of obtaining outcome ai is given by p(ai) =

∣∣⟨ψ|ai⟩
∣∣2

ii) The state of the system after measurement collapses to one of the eigenstates {|ai⟩} of
A.

The smooth deterministic evolution of the system is violently interrupted by the act of mea-
surement. Measurement in quantum mechanics is a probabilistic event which has enormous
philosophical notions and is still debated upon. When an observable A is measured, the only
possible results are the eigenvalues {ai} of the operator A. Even if the system was in a vast
superposition of states, the measurement outcome is restricted to this specific set of values.
However, we cannot, in general, predict the outcome with certainty. We can only predict the
probability of obtaining a specific outcome ai. This is given by the square of the projection
of the state vector |ψ⟩ onto the corresponding eigenvector |ai⟩. That is, p(ai) = |⟨ai|ψ⟩|2.
The closer the state |ψ⟩ is aligned with an eigenvector |ai⟩, the more likely that outcome
becomes. The measurement doesn’t just report a value; it fundamentally alters the system.
Immediately after obtaining the outcome ai, the system’s state is no longer |ψ⟩. It abruptly
collapses to the corresponding eigenvector |ai⟩. All information about the original superpo-
sition is lost, and the system is now defined by the result of the measurement. This is the
source of the inherent randomness in the quantum world. The notion of how this happens
is heavily debated upon and is termed the Measurement Problem1.

2.2 State Vector

As stated in the first postulate, the state vector |ψ⟩ is the fundamental carrier of informa-
tion in quantum mechanics. It is an element of a Hilbert space H, a complex vector space
equipped with an inner product. For a two-level system, which will be of significant interest
further, the Hilbert space is two-dimensional, H2. The standard basis for this space is given
by the orthonormal vectors, represented by |0⟩ and |1⟩, which we shall delve into further.

A general state of a two-level system is a superposition of these basis states:

|ψ⟩ = α|0⟩ + β|1⟩

where α, β ∈ C are complex amplitudes. The normalization condition ⟨ψ|ψ⟩ = 1 requires
that |α|2 + |β|2 = 1. This condition ensures that the probabilities of measuring the system
to be in state |0⟩ or |1⟩ sum to unity.

1Refer to the paper Tomaz et al. [2025] to question the reality we live in, and review through the different
notions and interpretations of one of the fundamental postulates of quantum mechanics.

Physics Formalism 35

2.3 Entanglement
When we consider systems composed of more than one two-level system, we encounter one
of the most profound and counterintuitive features of quantum mechanics entanglement. A
composite quantum system, say consisting of two subsystems A and B, is described by a
state vector in the tensor product of their individual Hilbert spaces, HAB = HA ⊗ HB .

A state of two two-level systems |ψ⟩AB is called separable if it can be written as a tensor
product of individual states of the subsystems:

|ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B
A separable state implies that the properties of subsystem A are independent of subsystem
B.

As we shall see further, a state is entangled if it is not separable. The most famous example
of an entangled state is the Bell state |Φ+⟩:

|Φ+⟩ = 1√
2

(|00⟩ + |11⟩) ≡ 1√
2

(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)

This state cannot be factored into a simple product of a state for system A and a state for
system B. The consequence of this is that the measurement outcomes of the two systems
are perfectly correlated, no matter how far apart they are. If someone measures their system
(A) and finds it in the state |0⟩, they would instantly know that their friend’s system (B)
is also in the state |0⟩. This spooky action at a distance, as Einstein famously called it,
does not allow for faster-than-light communication, but it is a powerful resource for quan-
tum computation and information protocols like teleportation, which we shall see further.
The counterintuitive predictions of quantum mechanics have been confirmed through exper-
iments that measured the polarization or spin of entangled particles at separate locations.
These measurements statistically violated Bell’s inequality, demonstrating that the correla-
tions produced by quantum entanglement cannot be accounted for by local hidden variables,
which are properties inherent to the individual particles themselves. However, although en-
tanglement can create statistical correlations between events occurring in widely separated
locations, it cannot be used for faster-than-light communication.

2.4 Measurement
Every dynamical observable q, such as position, momentum, angular momentum, etc., are
associated with a Hermitian operator Q. Note that eigenvalues {qi} of a Hermitian oper-
ator are real and the non-degenerate eigenvectors of a Hermitian operator are orthogonal.
The eigenvectors {|qi⟩} of a Hermitian operator form a complete orthonormal basis with a
spectral decomposition:

Q =
∑

qi

qiPqi ,

where the sum runs up to the dimension of the Hilbert space HN , and Pqi
are projectors.

For non-degenerate eigenvalues, we have Pqi = |qi⟩⟨qi|. For a degenerate subspace with

36 State Vector vs Density Matrix

{|q(1)
i ⟩, |q(2)

i ⟩, . . . , |q(r)
i ⟩}, with each member having the same eigenvalue qi, then the projector

is constructed using all of them as:

Pqi =
∑

j

|q(j)
i ⟩⟨q(j)

i |.

Measuring an observable Q for a quantum system in state |ψ⟩ results in one of the eigenvalues
qi with probability given by the Born rule:

p(qi) = ⟨Pqi⟩ψ = ⟨ψ|Pqi |ψ⟩ =
∣∣Pqi |ψ⟩

∣∣2.

Interestingly, some experimentalists are still investigating if this rule is exact or a first-
order approximation2. Note that this rule corresponds to an intuition of two different
concepts. Firstly, we can regard the measurement probability as the expectation value of
the projector over the state |ψ⟩ corresponding to an ensemble average. Also, this can be
seen as the corresponding probability amplitude of the system to transfer from a state |ψ⟩ to
a state proportional to Pqi |ψ⟩, with the amplitude defined from the inner product between
the states as ⟨ψ|(Pqi

|ψ⟩). Thereby, we further claim that the post-measurement state can
be thought of as evolution into the state Pqi

|ψ⟩, given formally by the normalised form as:

|ψqi⟩ = Pqi |ψ⟩
|Pqi |ψ⟩| = Pqi

|ψ⟩√
⟨ψ|Pqi

|ψ⟩
.

For a non-degenerate operator, we obtain p(qi) = |⟨qi|ψ⟩|2, and |ψqi
⟩ = |qi⟩. Note that

we will touch upon this in great detail, as this collapse of a state corresponds to the most
intricate theories in quantum mechanics. Since we have modeled everything through uni-
tarity so far, this non-unitary operation of measurement has very different characteristics
and nuances that we will explore.

2.5 State Vector vs Density Matrix
We formulate the notions of quantum mechanics in a very different notion, which is a pro-
found realisation of the statistical and probabilistic interpretations.

To gain a better understanding, we review the uncertainties in quantum mechanics first.
There are two different kinds of uncertainty in quantum mechanics. The first is the intrin-
sic quantum mechanical uncertainty due to its features of superposition and probabilistic
measurements. Knowing the state of the system completely still implies that we can only
make probabilistic statements about the outcomes of some experiments. For example, if we
have two particles in a 2-state system, then the system may be in an entangled state like

|ψ⟩ = 1√
2

(|0⟩|1⟩ + |1⟩|0⟩) .

In this case, it is not possible to say with certainty if a measurement of one of the particles
will yield the result 0 or 1.

2For example, the work Sinha et al. [2010] explores this direction.

Physics Formalism 37

The second is a classical uncertainty in the preparation of the state of the system. For
example, perhaps we think there’s a 50% chance that the system is in the state ψ given
above and a 50% chance that the system is in a different state |Φ⟩, given by

|Φ⟩ = 1√
2

(|0⟩|1⟩ − |1⟩|0⟩) .

This kind of uncertainty cannot be represented nicely using only state vectors in Hilbert
space. While we are already struggling with two particles, imagine the sheer amount of
technicalities that need to be specified for a huge system in thermodynamic aspects. It is
to be noted that this situation arises even in the case of a single particle.

The density matrix formulation, borrowed from Quantum Statistical Mechanics, can encode
both kinds of uncertainty. Because the density matrix can handle both kinds of uncertainty,
the density matrix generalizes the normal quantum state vector and lets us handle a wider
variety of cases.

2.6 Density Matrix Formalism
In quantum mechanics, the state of a system is conventionally described by a state vector
in a Hilbert space. However, as discussed before, when we wish to account for uncertainties,
whether they come from inherent quantum indeterminacy or from classical probabilistic
mixtures, the state vector is no longer sufficient. In such cases, we turn to the density
matrix (or density operator) formalism, which elegantly encapsulates both pure and mixed
states.

Let us begin with a single qubit in a pure state, represented by the state vector |ψ⟩ =
(
a
b

)
,

where a, b ∈ C satisfy |a|2 + |b|2 = 1. For a pure state, the density matrix is defined as the
projection operator onto the state:

ρ = |ψ⟩⟨ψ|.

Writing this out in the computational basis {|0⟩, |1⟩}, we obtain

ρ = |a|2|0⟩⟨0| + ab∗|0⟩⟨1| + a∗b|1⟩⟨0| + |b|2|1⟩⟨1|,

or, equivalently, in matrix form,
ρ =

(
|a|2 ab∗

a∗b |b|2
)
.

This provides us a natural way to compute probabilities, through ⟨0|ρ|0⟩ = |a|2 being the
probability of state |0⟩, and ⟨1|ρ|1⟩ = |b|2 is the probability of state |1⟩. This provides us
with a complete description of the ensemble.

The diagonal entries of ρ represent the probabilities of measuring the qubit in the states |0⟩
and |1⟩, respectively, while the off-diagonal (or coherent) terms capture the phase relation-
ships, i.e., the quantum coherence between these basis states.

38 Density Matrix Formalism

Pure states describe systems with complete knowledge of the quantum state. In practice,
however, we often encounter situations where the system is in a probabilistic mixture of
different states. Such a scenario is described by a mixed state. If the system is prepared in
the state |φi⟩ with probability pi, then the density matrix is given by

ρ =
∑

i

pi|φi⟩⟨φi|,

with the conditions,
pi ≥ 0,

∑

i

pi = 1.

The states {|φi⟩} are (not necessarily orthogonal in a general ensemble, but can be chosen
to form an orthonormal set in the spectral decomposition).

Further, we realise the agnostic interpretation of the density matrix as a characterization of
the entire system being the first moment (expectation value) of the projectors |φi⟩⟨φi| as
seen from the above relation as a probability-weighted average. This helps us in a compact
encoding of what is physically realizable. Measuring devices capture probabilities of various
measurements, as seen through projective measurements, which is encoded completely in
the density matrix as it is characterized by the first moment solely.

This formulation is especially useful when we have incomplete information about the system
or when the system is entangled with an external environment. One of the strengths of
the density matrix approach is its ability to provide a unified description of both classical
uncertainty and quantum superposition. The density matrix ρ possesses several important
mathematical properties:

• Hermiticity: ρ† = ρ, ensuring that its eigenvalues are real. Taking the Hermitian
conjugate of ρ, we have

ρ† =
(∑

i

pi|φi⟩⟨φi|
)†

=
∑

i

pi (|φi⟩⟨φi|)† (by linearity)

=
∑

i

pi|φi⟩⟨φi| (since (|φi⟩⟨φi|)† = |φi⟩⟨φi|)

= ρ.

Thus, ρ is Hermitian. This property guarantees that all eigenvalues of ρ are real.

• Positivity: ρ is a positive semi-definite operator, which implies that ⟨ϕ|ρ|ϕ⟩ ≥ 0 for
any state |ϕ⟩. For an arbitrary state |ϕ⟩, we compute

⟨ϕ|ρ|ϕ⟩ =
〈
ϕ

∣∣∣∣∣
∑

i

pi|φi⟩⟨φi|
∣∣∣∣∣ϕ
〉

Physics Formalism 39

=
∑

i

pi⟨ϕ|φi⟩⟨φi|ϕ⟩

=
∑

i

pi|⟨φi|ϕ⟩|2.

Since pi ≥ 0 and |⟨φi|ϕ⟩|2 ≥ 0 for all i, it follows that

⟨ϕ|ρ|ϕ⟩ ≥ 0.

Thus, ρ is a positive semi-definite operator.

• Unit Trace: Tr(ρ) = 1, reflecting the total probability. Using the definition of the
trace in any complete orthonormal basis {|j⟩}, we have

Tr(ρ) = Tr
(∑

i

pi|φi⟩⟨φi|
)

=
∑

i

piTr (|φi⟩⟨φi|) .

But for any normalised state |φi⟩,

Tr (|φi⟩⟨φi|) = ⟨φi|φi⟩ = 1.

Thus,
Tr(ρ) =

∑

i

pi = 1.

Moreover, the purity of a state can be quantified by the trace of ρ2. Starting from the
spectral decomposition, the square of the density matrix is

ρ2 =
(∑

i

pi|φi⟩⟨φi|
)
∑

j

pj |φj⟩⟨φj |




=
∑

i,j

pipj |φi⟩⟨φi|φj⟩⟨φj |.

If the states {|φi⟩} are chosen as an orthonormal eigenbasis of ρ, then

⟨φi|φj⟩ = δij ,

and we have,
ρ2 =

∑

i

p2
i |φi⟩⟨φi|.

Taking the trace,

Tr(ρ2) = Tr
(∑

i

p2
i |φi⟩⟨φi|

)

40 Reduced Density Operator

=
∑

i

p2
iTr (|φi⟩⟨φi|)

=
∑

i

p2
i .

Since
∑
i pi = 1 and 0 ≤ pi ≤ 1, by the properties of probabilities (Cauchy-Schwarz Inequal-

ity) we have
∑

i

p2
i ≤

(∑

i

pi

)2

= 1,

with equality if and only if one of the pi = 1 (i.e., for a pure state). Hence,

Tr(ρ2) ≤ 1.

For a pure state, Tr(ρ2) = 1 whereas for a mixed state, Tr(ρ2) < 1. This criterion provides
a clear operational test for distinguishing between pure and mixed states. Note that ρ2 is
not analogous to the second moment, which would require the variance, unlike the aspect
of ρ being seen to the first moment, characterizing expectation values.

An important aspect of the density matrix formalism is its role in computing expectation
values. Let O be any observable (a Hermitian operator). The expectation value of O in the
state ρ is defined as

⟨O⟩ =
∑

i

pi⟨φi|O|φi⟩.

On the other hand, using the definition of the trace,

Tr(ρO) = Tr
(∑

i

pi|φi⟩⟨φi|O
)

=
∑

i

piTr (|φi⟩⟨φi|O)

=
∑

i

pi⟨φi|O|φi⟩,

where we used the cyclic property of the trace and the fact that

Tr (|φi⟩⟨φi|O) = ⟨φi|O|φi⟩.

Thus, we conclude that
⟨O⟩ = Tr(ρO).

2.7 Reduced Density Operator
When dealing with a composite quantum system, such as an entangled pair, we often want
to describe the state of just one of its subsystems. The state vector |ψ⟩AB describes the
entire system, but what is the state of subsystem A alone? This question is answered by

Physics Formalism 41

the reduced density operator.

Given a composite system AB described by the density operator ρAB , the reduced density
operator for subsystem A is obtained by performing a partial trace over subsystem B,
denoted TrB

ρA ≡ TrB(ρAB)

The partial trace is an operation that traces out the degrees of freedom of subsystem B,
leaving an operator that acts only on the Hilbert space of A. If {|bj⟩} is an orthonormal
basis for the Hilbert space of subsystem B, the partial trace is defined as

ρA =
∑

j

⟨bj |ρAB |bj⟩

The resulting operator ρA completely describes all possible measurement outcomes for any
observable acting solely on subsystem A.

A remarkable feature of entanglement is revealed here. If the composite system AB is in
a pure entangled state, the reduced state of its subsystems will be a mixed state. Let’s
demonstrate this with the Bell state |Φ+⟩ = 1√

2 (|00⟩ + |11⟩). The density operator for the
composite system is

ρAB = |Φ+⟩⟨Φ+|

= 1
2 (|00⟩ + |11⟩) (⟨00| + ⟨11|)

= 1
2 (|00⟩⟨00| + |00⟩⟨11| + |11⟩⟨00| + |11⟩⟨11|)

Now, we compute the reduced density operator for subsystem A by tracing over B,

ρA = TrB(ρAB) = ⟨0|BρAB |0⟩B + ⟨1|BρAB |1⟩B
= 1

2 (⟨0|B |00⟩⟨00|0⟩B + ⟨1|B |11⟩⟨11|1⟩B)

= 1
2 (|0⟩A⟨0|A + |1⟩A⟨1|A)

= 1
2

(
1 0
0 1

)
= 1

2 I

The state of subsystem A is termed the maximally mixed state. It contains no information
about the state of the system along any measurement axis, since there is an equal probability
of measuring 0 or 1 for any measurement basis. The purity of this state is Tr(ρ2

A) = Tr(1
4 I) =

1
2 , confirming it is a mixed state. This demonstrates a fundamental principle that, for an
entangled system, information is stored in the correlations between the subsystems, not in
the subsystems themselves. By ignoring one part of an entangled system, we lose all the
information about the whole.

42 FURTHER READING & REFERENCES

Further Reading & References
Scott Aaronson. Quantum computing since Democritus. Cambridge University Press, 2013.

Claude Cohen-Tannoudji, Bernard Diu, and Frank Laloe. Quantum mechanics, volume 1.
Quantum Mechanics, 1:898, 1986.

N David Mermin. Quantum computer science: an introduction. Cambridge University Press,
2007.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

John Preskill. Lecture notes for physics 229: Quantum information and computation. Cal-
ifornia Institute of Technology, 16(1):1–8, 1998.

Ramamurti Shankar. Principles of quantum mechanics. Springer Science & Business Media,
2012.

Urbasi Sinha, Christophe Couteau, Thomas Jennewein, Raymond Laflamme, and Gregor
Weihs. Ruling out multi-order interference in quantum mechanics. Science, 329(5990):
418–421, 2010.

Robert Sutor. Dancing with qubits. Packt Publishing Birmingham, UK, 2019.

Anderson A Tomaz, Rafael S Mattos, and Mario Barbatti. The quantum measurement
problem: A review of recent trends. arXiv preprint arXiv:2502.19278, 2025.

Chapter 3

Theory of Computation

“As long as a branch of science offers an abundance of problems, so long is it
alive; a lack of problems foreshadows extinction or the cessation of independent
development.”

– David Hilbert, Mathematical Problems

Suppose we are tasked with a problem to be solved on a real computer. A computer can be
realised as a circuit model, with wires carrying information to be processed through a set
of logical operations (gates), which allows us to implement any complex calculation. Given
the limited resources of memory, time, and energy, we are tasked to find the best possible
sequences of a set of rules to solve it, optimising the resources. Welcome to the field of
computational complexity!

Computational complexity theory is a broad field that uses various models, circuit model,
RAM model, query model, etc, to better understand resource optimization in every possible
way. We will be looking at circuit model and RAM model in this chapter and query model
in chapter 7.

3.1 Turing Machine
By definition, an algorithm is a set of instructions for solving a problem. The Turing Ma-
chine1 provides a firm mathematical framework to aid the intuitive understanding of an
algorithm. It was introduced as the fundamental ’universal computer’ containing the essen-
tial elements on which any modern computer is based.

The general idea is strongly implied from what a ’human computer’2 would do. Such a
1Alan Turing was a brilliant and eccentric persona, credited with solving the Halting Problem through

very intuitive arguments and the formal structure of the Turing machine. Some believe the ideas of Turing
inspired Kurt Gödel to formulate the Incompleteness Theorems. For more, refer to the Wikipedia article on
the book Gödel, Escher, Bach by Douglas Hofstadter.

2Back in the day, a computer was one who computed (sadly, mostly women). Read the article The
Gendered History of Human Computers by Clive Thompson that sheds light on this matter, comparing it
with the current status of women in computer science.

43

https://en.wikipedia.org/wiki/Gödel,_Escher,_Bach, Escher, Bach
https://en.wikipedia.org/wiki/Gödel,_Escher,_Bach, Escher, Bach
https://www.smithsonianmag.com/science-nature/history-human-computers-180972202/
https://www.smithsonianmag.com/science-nature/history-human-computers-180972202/

44 Turing Machine

human computer has limited storage capacity for information, but ideally has an unlimited
amount of paper for reading and writing operations. Formally, a Turing machine consists of

• A tape, which can be infinite and is subdivided. Each cell division constitutes one
letter Ai from the alphabet {A1,A2, . . . ,Ak} or is blank.

• A control unit with states referring to the internal configuration {s1, s2, . . . , sl,H},
where H halts and terminates the computation internal state and the symbol currently
being read. Since we want this machine to be physically realizable, the number of
possible internal states should be finite.

• A read/write head which reads and writes a new symbol in the current cell, overwriting
whatever symbol is there, moving backwards or forward one cell, and switching to a
new state or halt.

Turing’s first result is the existence of a universal machine, whose job is to simulate any
other machine described via symbols on the tape. Let us briefly emphasize why this is so
groundbreaking. Imagine you were given a set of Turing machines. Through some painstak-
ing work and tweaking, you can build a machine that can solve any problem for you, that
can play games, that can watch videos, print text etc.

If this wasn’t already enough, Turing’s fundamental insight on the Halting problem envi-
sioned ideas that are very simple to grasp. The halting problem questions whether a given
problem halts or not. Simple, isn’t it? We can’t run it for ages, because we are limited on
time, space and money. Although sounding very simple, this problem can give insights into
profound philosophies. Think about any unsolved conjecture in math. Suppose we could
test out the condition for every integer or natural number through a program sequentially,
such that it halts when the conjecture fails. Then deciding whether that program ever halts
is equivalent to deciding the truth of the conjecture.

But since we still have many unsolved conjectures, it gives hope to believe that there exists
no program to solve the halting problem. How can we even prove such a thing? Mr. Turing
to the rescue! These types of problems are frequently encountered in logic and solved by
explicitly constructing a contradiction against the assumption.

Say, we have a program P that decides whether a given program Ω halts. We try to analyse
the internal dynamics of the problem underpinning some contradiction through it. Generate
another program R through P, such that R runs forever if Ω halts given its own code as
input, or R halts if Ω runs forever given its own code as input. In an argument inspired by
Russel’s paradox3, what happens if we feed the program R itself? For Ω ≡ R, the program
halts if it runs forever, and runs forever if it halts. Beautiful, isn’t it? These logical argu-
ments comprise a basis of proof called reductio ad absurdum.

A corollary to this that easily falls out is the well-acclaimed Gödel’s incompleteness theorem.
This is the beauty of logic! Such a profound statement about the boundaries of mathematics
and, thereby, life is contained in this beautiful and intricate yet simple argument by Turing.

3Suppose a barber who shaves all men who do not shave themselves. Who shaves the barber? For a
detailed insight into this paradox, refer to the Wikipedia article on Russell’s paradox.

https://en.wikipedia.org/wiki/Russell's_paradox

Theory of Computation 45

3.2 Circuit Model of Computation
We proceed forward to building a real computer, through ideas from the previous sections,
but by introducing the bit, the fundamental unit of classical information. The bit is defined
as a two-valued binary variable, typically encoding 0 and 1. A circuit is made of wires
and gates, with each wire carrying one bit of information, and the gates performing logical
operations.

Any number N < 2n can be encoded as a binary sequence of 0’s and 1’s as:

N =
n−1∑

k=0
ak2k,

where the value of each digit ak ∈ {0, 1}. We represent N ≡ an−1an−2 . . . a1a0. The
supremacy of binary would be to enable voltage-based regulations for storing information.
The binary operations are embodied through logical gates, which respect the Boolean alge-
bra.

In any model of computation, we provide a n-bit input and recover a m-bit output, repre-
sented through a logical function as:

f : {0, 1}n → {0, 1}m.

The universality of some elementary logical operations is to embed any operation as a series
of elementary logical operations. Any function can be constructed from the elementary
gates AND, OR, NOT, and FANOUT, constituting the universal set of gates for classical
computation. The number of these basic gates used in a particular algorithm determines
the circuit complexity of the algorithm.

3.3 RAM Model of Computation
The most commonly used model of computation for the analysis of algorithms is the
Random-Access Machine RAM model of computation. In this book, when we talk about
asymptotic bounds, unless specified otherwise, we talk about the RAM model of computa-
tion. Informally4, the following describes the RAM model:

• Has a finite memory that is divided into units of w bits.

• We set w = logn where n is the upper bound on the size of input received or the
upper bound on the size of the computation.

• Basic arithmetic (+,-,×, % , /), logical (NOT, AND, OR) and relational (>,<,=)
operators are considered to take one time unit.

• Function call, accessing a memory location, and bitwise operations are also one time
step.

4For a more mathematically rigorous understanding, refer to Nelson [2016] or watch the video lec-
tures O’Donnell [2020].

46 Bird’s Eye View of Complexity Theory

• Other complex operations, which are generally composed of the above unit time op-
erations, have correspondingly multiple time steps.

Thus, for any algorithm, the total number of time steps, calculated as mentioned above,
determines the time complexity of the algorithm. The size of memory used by the algorithm
overall is called space complexity.

3.4 Bird’s Eye View of Complexity Theory
The ability to compute is limited by two resources: space (memory) and time. The difficulty
of computing allows problems to be categorized into different complexity classes.

Consider an algorithm that takes in an input of length n (for example, the number of digits
in a number). We call this a polynomial time algorithm if it doesn’t take more than Cnk

steps for some fixed C, k ≥ 0, to compute the answer. We denote this by O(nk). These are
considered efficient algorithms. The class of problems solved by these algorithms is called
P.

Another important complexity class is called NP. This is the class of problems whose so-
lutions can be verified in polynomial time. For example, once we find the factorization of
some number N = PQ, we can efficiently verify that PQ = N . Indeed, we have P ⊆ NP.

Both complexity classes presented above are bounded by time. There are also a number of
complexity classes bounded by space. PSPACE is such a class that contains problems that
can be solved with a polynomial number of bits in input size.

For our study, there are two more complexity classes that are important. The first is the BPP,
which are problems that can be solved with a bounded probability of error in polynomial
time. The second one is the BQP, which is essentially the same thing on a quantum machine.
Factoring numbers using Shor’s algorithm is BQP.

PSPACE

BQP

BPP
NP ?=

P

Theory of Computation 47

The known relationship between these complexity classes is:

P ⊆ BPP, NP, BQP ⊆ PSPACE

In addition, we also have BPP ⊆ BQP. The relationship between BPP, NP and BQP is unknown.

3.5 Church-Turing Thesis
Complexity theory classifies problems as efficient, which can be solved using resources that
are bounded by the size of the input, and intractable, which are superpolynomial in the
input size. While the former is easy or feasible to solve, the latter is difficult. But how can
we solve the tractable ones?

The Church-Turing thesis asserts that any model of computation can be simulated by a
Turing machine, with almost a polynomial increase in the number of elementary operations
involved. This profound correspondence states that if a problem cannot be solved with
polynomial resources on a Turing machine, then we better lose hope!

So far, we have been seeing the story of classical computers. Can quantum computers give
hope to solve even the intractable problems? The honest answer is, nobody knows. But
over the past few decades, the rise of new quantum algorithms, robust quantum error cor-
rection techniques, and the advancement of qubit technology has increased the application
of quantum computing to a wide range of disciplines, including machine learning, compu-
tational chemistry, biology, quantum simulation of molecules, etc, which has kept quantum
computing research positive. It has also led to the introduction of brand new fields like
post-quantum cryptography.

Also, it is important to remember that quantum computers won’t likely replace classical
computers as each of these is specialized in its own way. We will be seeing an example of
this in chapter 6, how quantum computing using quantum Fourier transform can solve fac-
toring problem which is a classical NP-hard problem, yet this algorithm can not be used to
compute all Fourier coefficients of a function, a polynomial time solvable task on a classical
computer. We still do not know what tasks a quantum computer is better at compared to
classical computers. All we know is that for certain cherry-picked problems, we certainly
have a better algorithm in the quantum world.

Thus, there are a lot of unanswered questions in the field of quantum computing and quan-
tum information, waiting to be solved by future researchers (intended to the readers)!

48 FURTHER READING & REFERENCES

Further Reading & References
Scott Aaronson. Quantum computing since Democritus. Cambridge University Press, 2013.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

Giuliano Benenti, Giulio Casati, and Giuliano Strini. Principles of quantum computation
and information: Basic tools and special topics, volume 2. World Scientific, 2004.

Douglas R. Hofstadter. Godel Escher Bach: An Eternal Golden Braid. Basic Books, Inc.,
USA, 1999. ISBN 0465026567.

N David Mermin. Quantum computer science: an introduction. Cambridge University Press,
2007.

Jelani Nelson. Lectures on Algorithm and Complexity Theory. Harvard University, 2016.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

Ryan O’Donnell. Lectures on CS Theory Toolkit. Carnegie Mellon University, 2020.

Chapter 4

Overview of Quantum
Computer and Quantum
Information

“Computation is Physical. The universe is a [quantum] computer.”
– Seth Lyod, Programming the Universe

A brief history1 of the developments leading to quantum computing and information are
presented in the Table 4.1 below. We shall delve into the relevant concepts that we shall be
significantly using for quantum computing and information.

4.1 Qubit
The basic unit of information in the classical world is a bit. A bit can be 0 or 1. The

quantum world analogue of a bit is a qubit. But spooky as quantum mechanics sounds, a
qubit can be 0 and 1 at the same time. More precisely, it can be any linear combination of
|0⟩ and |1⟩.

Formally, a qubit is a two-level quantum system. It resides in a 2-dimensional complex lin-
ear vector space (Hilbert space). With orthonormal basis {|0⟩ , |1⟩}. Then the most general
normalised state can be expressed as a |0⟩ + b |1⟩ satisfying |a|2 + |b|2 = 1.

Consider a general qubit |ψ⟩,

|ψ⟩ = α |0⟩ + β |1⟩ = α

(
1
0

)
+ β

(
0
1

)
=
(
α
β

)

1Inspired from a recent talk at ICTS by Dr. Ashwin Nayak. Abstract: Although quantum mechanics
was established before computability theory, the idea of quantum computers emerged in the 1980s. Initially
explored by a select few, quantum computation gained prominence in the 1990s, particularly after the
introduction of Shor’s algorithm for integer factorization, which demonstrated the advantages of quantum
computing. Since then, the field has evolved, driven by the potential for new technologies and the exploration
of innovative ideas.

49

https://www.icts.res.in/discussion-meeting/qm100/title-and-abstract

50 Qubit

1930s Models of Computation
Classes include Recursive functions, λ-calculus, Turing Machine; early for-
malizations motivated by automating theorem-proving.

1936 Church–Turing thesis
Any reasonable model of computation is equivalent in power to the Turing
Machine.

1960-70s Quantum Communication, Cryptography, Quantum Money
1980 Computation is Physical

A paradigm shift recognizing that computation must obey the laws of physics;
notions further supported by insights from information theory and thermody-
namics.

1982 Feynman’s Quantum Computer
Feynman proposed using quantum systems to simulate physical processes that
are infeasible for classical computers.

1985 Deutsch’s Physical Church–Turing thesis
Deutsch extended the Church-Turing thesis to the quantum realm, arguing that
a universal quantum computer could efficiently simulate any physical process.

1985-92 Extended Church–Turing thesis in the Classical Context
This thesis asserted that any reasonable computational model can be efficiently
simulated by a probabilistic Turing machine. Early work by Deutsch and later
by Josza, along with insights formalized by Bernstein and Vazirani, began to
challenge this view in relativized (oracle) settings.

1993 Bernstein-Vazirani’s Quantum Turing Machine
Bernstein and Vazirani rigorously defined the Quantum Turing Machine model
and demonstrated, in the oracle (or relativized) setting, a superpolynomial
advantage over classical deterministic models.

1994 Simon’s Problem
Simon’s algorithm provided the first exponential separation between quantum
and classical query complexities, hinting at the power of quantum computation.

1994 Shor’s Algorithm
Shor introduced polynomial-time algorithms for integer factorization and dis-
crete logarithms, exploiting periodicity via the Quantum Fourier Transform.
This result showcased an exponential advantage over the best-known classical
algorithms.

1996 Quantum Parallelism & Formula Evaluation
Grover’s algorithm showcased quantum parallelism via superposition, achiev-
ing a quadratic speedup for unstructured database search over classical ran-
domized algorithms. This breakthrough not only demonstrated a clear quan-
tum advantage but also inspired new modular techniques in quantum algorithm
design.

Table 4.1: Overview of the developments leading to modern-day quantum computation and
information.

Overview of Quantum Computer and Quantum Information 51

As α, β ∈ C we can write them as zc = rce
iθc

By doing this, we get the polar representation of the quantum state:

|ψ⟩ = rαe
iθα |0⟩ + rβe

iθβ |1⟩

With some rearrangement and ignoring the overall phase (as a qubit is normalised and in
general the overall phase does not matter), we get,

|ψ′⟩ = e−iθα
(
rαe

iθα |0⟩ + rβe
iθβ |1⟩

)

= rα |0⟩ + rβe
i(θβ−θα) |1⟩

= rα |0⟩ + rβe
iθ |1⟩

|α|2 + |β|2 = 1 ⇒ |rα|2 + |x+ iy|2 = r2
α + x2 + y2 = 1

This last equation is just a 3-dimensional sphere in real space!

Setting z = rα we can write the state as,

|ψ′⟩ = z|0⟩ + (x+ iy)|1⟩
= cos θ|0⟩ + sin θ(cosϕ+ i sinϕ)|1⟩
= cos θ|0⟩ + eiϕ sin θ|1⟩

But notice that the angles are restricted,

0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π

This gives us the general form of a qubit, which can be thought of as a point on a unit
sphere specified by the coordinates (θ, ϕ)

|ψ⟩ = cos θ2 |0⟩ + eiϕ sin θ2 |1⟩

This unit sphere on which the qubit lies is called the Bloch sphere.

Remarks. The two orthogonal qubits {|0⟩, |1⟩} are along the z-axis in the Bloch sphere.
These two basis kets are called the computational basis states. Later you will learn about
the Pauli group and realise that the computational basis is nothing but the eigen basis of the
Pauli Z operator or the Phase gate Z.

The state |0⟩+|1⟩√
2 and |0⟩−|1⟩√

2 denoted as |+⟩ and |−⟩ respectively are eigen basis of Pauli X
operator or the NOT gate X. And the state |0⟩+i|1⟩√

2 and |0⟩−i|1⟩√
2 denoted as |i⟩ and | − i⟩

respectively are eigen basis of Pauli Y operator or the Y gate which is equal to −iXZ.

52 Multi Qubits

φ

θ

x̂ = |0⟩+|1⟩√
2

−x̂ = −|0⟩−|1⟩√
2

ŷ = |0⟩+i|1⟩√
2−ŷ = −|0⟩−i|1⟩√

2

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 4.1: Bloch Sphere

4.2 Multi Qubits
Although a single qubit is extremely interesting, but the true power of quantum computation
is unleashed when we consider multiple qubits working together. Just as classical computers
use registers of many bits, quantum computers use registers of multiple qubits. The way we
describe these multi-qubit systems is through a mathematical construction called the tensor
product.

Let’s consider the simplest multi-qubit system of two qubits. If the first qubit is in the state
|ψA⟩ = α0|0⟩ + α1|1⟩ and the second is in the state |ψB⟩ = β0|0⟩ + β1|1⟩, the state of the
combined two-qubit system is given by their tensor product, denoted |ψA⟩ ⊗ |ψB⟩. The ten-
sor product combines the two vector spaces into a larger one. For a single qubit, the Hilbert
space is 2-dimensional (H2). For two qubits, the combined Hilbert space H4 = H2 ⊗ H2 is
4-dimensional.

The tensor product is distributive, so we can expand it as follows:

|ψA⟩ ⊗ |ψB⟩ = (α0|0⟩ + α1|1⟩) ⊗ (β0|0⟩ + β1|1⟩)
= α0β0(|0⟩ ⊗ |0⟩) + α0β1(|0⟩ ⊗ |1⟩) + α1β0(|1⟩ ⊗ |0⟩) + α1β1(|1⟩ ⊗ |1⟩)

For convenience, we use a shorthand notation where |a⟩ ⊗ |b⟩ is written as |ab⟩ or |ψA⟩|ψB⟩.
Using this, the state becomes

α0β0|00⟩ + α0β1|01⟩ + α1β0|10⟩ + α1β1|11⟩

Overview of Quantum Computer and Quantum Information 53

The four states |00⟩, |01⟩, |10⟩, |11⟩ form an orthonormal basis for the two-qubit system.
This generalizes powerfully: a system of n qubits is described by a state vector in a 2n-
dimensional Hilbert space. This exponential growth of the state space with the number of
qubits is a key reason for the potential power of quantum computers.

It’s important to remember that a general n-qubit state is a superposition of all 2n basis
states. For two qubits, an arbitrary state is:

|Ψ⟩ = c00|00⟩ + c01|01⟩ + c10|10⟩ + c11|11⟩

where the complex coefficients must satisfy
∑
ij |cij |2 = 1. The above 2n basis states are

also written as numbers 1 to n in base 10, corresponding to the base 2 representation. That
is,

|Ψ⟩ = c00|0⟩ + c01|1⟩ + c10|2⟩ + c11|3⟩
As we saw in the previous chapter, if a state cannot be written as a simple tensor product
of its constituent parts (i.e., it is not separable), it is entangled.

In many quantum algorithms, we also make use of ancilla qubits. These are extra helper
qubits that are used as a workspace during a computation, much like temporary variables
in classical programming. They might be used to store intermediate results or to enable
complex controlled operations. Typically, an ancilla qubit is initialized to a known state, like
|0⟩, interacts with the primary qubits of the computation through the multi-qubit operation,
and is ideally returned to its initial state at the end of the algorithm so it is disentangled
from the final result.

4.3 Gates and Circuits

4.3.1 Single Qubit Gates and 2-qubit Gates
As seen in the previous section, a qubit can be thought of as a unit vector in the Bloch
sphere. So, what does computation mean in this setup? Given an input qubit, we can think
of computation as a series of transformations done to the input qubit to get the desired
output qubit state. What type of transformation? Note that the qubit is of unit norm, and
norm-preserving transformations are unitary transformations. So these transformations can
be captured by unitary matrices.

Some examples of single-qubit gates and two-qubit gates are given below in Fig. 4.2. Notice
that all these quantum gates are unitary matrices.2

4.3.2 Constructing Arbitrary 2-qubit States
From the Sec. 4.1, we know that for any |ψ⟩ there is a 1-qubit unitary gate U that takes |0⟩
to |ψ⟩ such that U |0⟩ = |ψ⟩).

2For detailed explanation, refer to Nielsen and Chuang [2011].

54 Gates and Circuits

Operator Gate(s) Matrix

Pauli-X (X) X
(

0 1
1 0

)

Pauli-Y (Y) Y
(

0 −i
i 0

)

Pauli-Z (Z) Z
(

1 0
0 −1

)

Hadamard (H) H 1√
2

(
1 1
1 −1

)

Phase (S, P) S
(

1 0
0 i

)

π/8 (T) T
(

1 0
0 eiπ/4

)

Controlled Not
(CNOT, CX)




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




Controlled Z
(CZ) Z




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




SWAP



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




Toffoli
(CCNOT,

CCX, TOFF)




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




Figure 4.2: Comprehensive list of some of the extensively used single-qubit and two-qubit
gates in quantum computation.

Overview of Quantum Computer and Quantum Information 55

An arbitrary 2-qubit state can be written as,

|Ψ⟩ = α00|00⟩ + α0,|01⟩ + α10|10⟩ + α11|11⟩.

This can be rewritten as
|Ψ⟩ = |0⟩ ⊗ |ψ⟩ + |1⟩ ⊗ |ϕ⟩,

where
|ψ⟩ = α00|0⟩ + α01|1⟩, |ϕ⟩ = α10|0⟩ + α11|1⟩.

Now consider an unitary U ⊗ I acting on |Ψ⟩ such that

(U ⊗ I)|Ψ⟩ = U|0⟩ ⊗ |ψ⟩ + U|1⟩ ⊗ |ϕ⟩
= (a|0⟩ + b|1⟩) ⊗ |ψ⟩ + (−b∗|0⟩ + a∗|1⟩) |ϕ⟩
= |0⟩ |ψ′⟩ + |1⟩ |ϕ′⟩ .

where |ψ′⟩ = a|ψ⟩ − b∗|ϕ⟩ and |ϕ′⟩ = b|ψ⟩ + a∗|ϕ⟩.
Note that U is a unitary that we are constructing. Thus we can pick a and b such that
we make |ψ′⟩ and |ϕ′⟩ orthogonal. And choose λ and µ such that we make |ψ′′⟩ = |ψ′⟩

λ ,
|ϕ′′⟩ = |ϕ′|

µ unit vectors.

As |ψ′′⟩ , |ϕ′′⟩ are orthonormal, they are related to |0⟩ and |0⟩ by unitary transformation.

|ψ′′⟩ = V |0⟩ |ϕ′′⟩ = V |1⟩.

Putting all this together, we can rewrite the equations as

(U ⊗ I)|Ψ⟩ = |0⟩ |ψ′⟩ + |1⟩ |ϕ′⟩
= λ |0⟩ |ψ′′⟩ + µ |1⟩ |ϕ′′⟩

(U ⊗ I)|Ψ⟩ = U|Ψ⟩ (say)
UU† |Ψ⟩ = |Ψ⟩ (as U is unitary)

=⇒ |Ψ⟩ = U†(|0⟩ |ψ′⟩ + |1⟩ |ϕ′⟩) = (U† ⊗ V)(λ |00⟩ + µ |11⟩)
(since |ψ′′⟩ and |ϕ′′⟩ can be got from |0⟩ and |1⟩ by an unitary transformation)

= (U† ⊗ V)(C10(λ |0⟩ + µ |1⟩) ⊗ |0⟩)
= (U† ⊗ V)(C10(W |0⟩) ⊗ |0⟩)

|Ψ⟩ = U†V C10W |00⟩ .

Here C10 is a cNOT gate with 1st qubit as the target and the second as the control, and W
is yet another unitary. Therefore, three single-qubit unitary and a cNOT gate are enough
to get any general 2 2-qubit state from |00⟩.

4.3.3 Need for n-qubit Gates?
For a general quantum circuit with n qubits, would we need to have all possible n-qubit
gates? Fortunately, we need not just keep learning multiple gates for each value of n. It

56 Reversible Computation

turns out that arbitrary unitary transformations can be approximated to an arbitrary degree
of precision by sufficiently many 1- and 2-qubit gates 3.
Also, the technical challenge in designing higher-order quantum gates is way more challeng-
ing than the already existing challenge in making reliable 1 and 2-qubit gates. Thus, the art
of designing quantum algorithms lies in carefully picking the unitary transformations that
can be built entirely out of products of unitary transformations on 1 and 2 qubits.

Implementation of qubits and gates

As we have seen, qubits are essentially two-level quantum systems. So any two-level
quantum system can be used to realise a physical qubit. Currently, multiple such
quantum systems are being developed by researchers, each with its own advantages
and disadvantages, appropriately used depending on the purpose. Some of them
used in practice are Superconducting, Trapped ions, Quantum dots, Photons and
Neutral atoms.

IBM primarily uses superconducting transmon qubits. Superconducting qubits are
controlled by microwave pulses. Gates are implemented by carefully tuned microwave
pulses (single-qubit rotations) and microwave-activated two-qubit interactions (like
cross-resonance), scheduled and calibrated at the pulse level via Qiskit. a

aFor a detailed account, refer to the papers Kjaergaard et al. [2020] and review article Wendin
[2017]

4.4 Reversible Computation
As defined in chapter 3, algorithm is a set of instructions for solving a problem. Suppose we
wish to compute a function f , one can think of the classical computer program as given an
input x it performs the necessary instructions and outputs f(x). Similarly we would expect
to design a quantum computer to act on x and produce the necessary f(x).

For a function f : {0, 1}n → {0, 1}m, a quantum computer needs at least n + m qubits
to compute it. Like the Turing Machine, which overwrites on the input tape, why can’t
we use fewer than n + m qubits to compute f? One important reason why this can not
be done is that if f assigns the same value to different values of x then this computa-
tion cannot be inverted if its only effect is to transform the contents of a single register
from x to f(x). Thus, the reversibility constraint forces us to have at least n + m qubits
to compute f . Thus, computing f is the same as applying a unitary Uf on the n+m qubits.

Uf is defined by specifying its action on the basis states. By linearity, this can be extended
to any arbitrary superposition of the basis vectors. The standard quantum computation
protocol defines the action of Uf on the computational basis |x⟩n |y⟩m of the n+m qubits
making the input and output registers as follows:

Uf (|x⟩n |y⟩m) = |x⟩n |y ⊕ f(x)⟩m
3The argument is given with great detail in the paper Barenco et al. [1995]

Overview of Quantum Computer and Quantum Information 57

where ⊕ indicates modulo-2 bitwise addition (without carrying) or exclusive OR operation.

If the initial value represented by the output register is y = 0 then we have

Uf (|x⟩n|0⟩m) = |x⟩n|f(x)⟩m

and we end up with f(x) in the output register. Regardless of the initial value of y, the
input register remains in its initial state |x⟩n.

The transformation Uf is clearly invertible. Also note that Uf is its own inverse:

UfUf (|x⟩|y⟩) = Uf (|x⟩|y ⊕ f(x)⟩)

= |x⟩|y ⊕ f(x) ⊕ f(x)⟩ = |x⟩|y⟩,
since z ⊕ z = 0 for any z.

Thus, Uf gives a generic way to construct any function f on a quantum computer.

4.4.1 Information is Physical
Though it appears as if some mental gymnastics have to be done to compute f(x) by first
defining Uf in a quantum computer, this has given an intrinsic advantage to quantum com-
puters over classical irreversible computation.

Be it a bit or a qubit, in the end, the information is stored physically in classical or quan-
tum computer hardware. So, one can say information is physical and erasure of information
demands a physical erasure, in turn demanding energy. This, by nature, is a dissipative
process, thus irreversible. This concept was formalised by Rolf Landauer in 1961. 4

Any logical function on a classical computer can be implemented using only NAND gates,
thus calling it a universal gate. These computations are typically irreversible. Considering
just the NAND gate

(a, b) → ¬(a ∧ b)

has two input bits and one output bit, and we can’t recover a unique input from the output
bit. As formally shown by Landauer, as we keep losing information, we need energy to
operate the NAND gate. So, if you are given a limited number of batteries, then there is a
theoretical limit to how long your computation can run.

Is there a way out of this energy crisis? What if all steps can be made reversible? Is
it possible to do so? Charles Bennett precisely showed this in 1973, concluding that any
computation can be performed using only reversible steps. Thus, no dissipation and no
power expenditure, at least in principle. The (Toffoli) gate

(a, b, c) → (a, b, c⊕ a ∧ b)
4You can read more about this and a related concept, "Maxwell’s demon", from Preskill [1998]

58 Reversible Computation

is a reversible 3-bit gate. It flips the third bit if the first two bits have value 1 and does
nothing otherwise. Notice the third output bit is nothing but the NAND of a and b if c = 1.
This shows we can transform an irreversible computation to a reversible one by replacing
the NAND gates with Toffoli gates. This, in principle, causes negligible energy dissipation.

Though it seems as if we can save a lot of energy by replacing NAND gates with Toffoli
gates, note that in this process, we end up having 3 bits in the place of 2 bits previously
used. If one wishes to erase all these extra junk bits, one needs to pay this energy cost later!
But can we do something smart? Here comes the real power of reversible computing. When
this occurred to Bennett, he pointed out that one can reverse the entire computation after
getting the output and go back to the initial configuration. This restores the state of the
initial bits, thus removing junk without extra energy expense!

Today’s classical computer hardware can handle this energy dissipation, and we still con-
tinue to use irreversible computation. But eventually, when computer chips and components
shrink in size, to protect them from melting due to this heat dissipation, we would need the
help of reversible computing.

4.4.2 Classical Reversible Computation v.s Quantum Computing
Classically NOT is the only nontrivial reversible operation that can be performed on a single
bit. Far more operations are possible on a single qubit. All linear combinations of reversible
operations that take a single qubit to another single qubit state represent transformations
U, which are unitary and satisfy the condition

UU† = U†U = 1

By definition, unitary transformations are invertible. Thus, quantum computing is re-
versible.

On a classical computer, the permutation of the classical bits is a reversible operation. In
fact, just applying the same permutation again gets back the classical bits to their initial
position. The 2n many n-bit configuration of a classical computer forms the basis of an
n-qubit quantum state. Thus, any permutation P of the 2n bit states has an associated
unitary transformation U on n qubits. Therefore, we can just define U to act like P on the
classical basis state, and this by linearity extends to an n-qubit state.

UU† = U†U = 1

Thus, on a classical computer, reversibility is an additional constraint, unlike the inherent
reversibility of a quantum computer. Also, classical reversibility is restricted to the permuta-
tion of the bit strings, whereas in a quantum computer, it naturally allows for fundamentally
quantum behaviour like superposition, entanglement, and non-classical correlations.

Overview of Quantum Computer and Quantum Information 59

4.5 Quantum Parallelism
In chapter 3, we saw the powers Turing Machines have - anything that can be computed can
be captured by a Turing machine. Turing completeness is the ability for a computational
model or a system of instructions to simulate a Turing machine. A programming language
that is Turing Complete is theoretically capable of expressing all tasks accomplished by
computers; nearly all classical programming languages are Turing Complete if the limita-
tions of finite memory are ignored. So, given that everything of interest can be computed
on a classical computer, why are we so keen on building a quantum computer? Even energy
dissipation can be avoided by classical reversible computation.

To understand what quantum computers can offer more than a classical computer, one has
to understand what are the unique features of quantum mechanics that are not described
in classical mechanics. Many would answer this with two keywords, superposition and en-
tanglement.

Consider a two-qubit state |0⟩|0⟩. If we apply to each qubit the 1-qubit Hadamard trans-
formation H, then we get

(H ⊗ H)(|0⟩ ⊗ |0⟩) = H1H0|0⟩|0⟩ = (H|0⟩)(H|0⟩)

= 1√
2

(|0⟩ + |1⟩) 1√
2

(|0⟩ + |1⟩)

= 1
2(|0⟩|0⟩ + |0⟩|1⟩ + |1⟩|0⟩ + |1⟩|1⟩)

= 1
2(|0⟩2 + |1⟩2 + |2⟩2 + |3⟩2).

The n-qubit state generalisation follows as,

H⊗n|0⟩n = 1
2n/2

∑

0≤x<2n

|x⟩n,

where
H⊗n = H ⊗ H ⊗ · · · ⊗ H, n times.

Suppose we are interested in constructing a function f : {0, 1}n → {0, 1}m. If the initial
state of the input register is |0⟩n, applying Uf to this state directly computes f(0n). Instead,
we apply an n-fold Hadamard transformation to that register first to get an equally weighted
superposition of all possible n-qubit inputs. If we then apply Uf to that superposition, by
linearity, we get

Uf (H⊗n ⊗ 1m)(|0⟩n|0⟩m) = 1
2n/2

∑

0≤x<2n

Uf (|x⟩n|0⟩m)

= 1
2n/2

∑

0≤x<2n

|x⟩n|f(x)⟩m.

60 No-Cloning Theorem

So if we have a thousand qubits in the input register, initially all in the state |0⟩1000 (and m
more in the output register), applying thousand Hadamard then Uf results in 21000 ≈ 10301

evaluations of the function f . Which is much larger than the number of atoms (1080) in the
universe! Thus, starting with just a thousand qubits, it seems as though we can do 10301

computations! This is called quantum parallelism.

So, can we now claim we have successfully computed f(x) for all x in one run of our quantum
circuit? The answer is no! And this clearly shows why quantum computing is not parallel
computing.

Though 1
2n/2

∑
0≤x<2n |x⟩n|f(x)⟩m holds the superposition of all values of f(x) after mea-

surement the state of the registor reduces to |x0⟩ |f(x0)⟩ and we no longer can know about
f(x) for any other x other than x0.

What if we now make a sufficiently large number of copies of the output register and measure
all to get f(x) at all x without running the whole computation over again? Unfortunately,
this is also not possible, and we will see why in the next section.

4.6 No-Cloning Theorem
Theorem 4.6.1. (No-Cloning Theorem) There exist no unitary U such that U(|ψ⟩ |0⟩) =
|ψ⟩ |ψ⟩

Proof. If
U(|ψ⟩|0⟩) = |ψ⟩|ψ⟩ and U(|ϕ⟩|0⟩) = |ϕ⟩|ϕ⟩

then it follows from linearity that

U(a|ψ⟩ + b|ϕ⟩)|0⟩ = aU|ψ⟩|0⟩ + bU|ϕ⟩|0⟩ = a|ψ⟩|ψ⟩ + b|ϕ⟩|ϕ⟩

But if U cloned arbitrary inputs, we would have

U(a|ψ⟩ + b|ϕ⟩)|0⟩ = (a|ψ⟩ + b|ϕ⟩)(a|ψ⟩ + b|ϕ⟩)
= a2|ψ⟩|ψ⟩ + b2|ϕ⟩|ϕ⟩ + ab|ψ⟩|ϕ⟩ + ab|ϕ⟩|ψ⟩

Notice that these cross terms are missing in U|ϕ⟩|0⟩ = a|ψ⟩|ψ⟩+b|ϕ⟩|ϕ⟩. These two equations
are equal only when either a or b is zero. Thus, for an arbitrary state, we do not have any
unitary that can copy that state.

Not only that, we can prove a stronger claim that we can not even copy an arbitrary state
to a reasonable degree of approximation.

Theorem 4.6.2. There exists no unitary U that can approximately clone an arbitrary state.
That is there is no unitary U such that U(|ψ⟩ |0⟩) ≈ |ψ⟩ |ψ⟩

Proof. Suppose that U approximately cloned both |ϕ⟩ and |ψ⟩ :

U(|ψ⟩|0⟩) ≈ |ψ⟩|ψ⟩ and U(|ϕ⟩|0⟩) ≈ |ϕ⟩|ϕ⟩

Overview of Quantum Computer and Quantum Information 61

Then, since unitary transformations preserve inner products, since the inner product of
a tensor product of states is the (ordinary) product of their inner products, and since
⟨0 | 0⟩ = 1, it follows that

⟨ϕ | ψ⟩ ≈ ⟨ϕ | ψ⟩2

But this requires ⟨ϕ | ψ⟩ to be either close to 1 or close to 0 . Hence a unitary transformation
can come close to cloning both of two states |ψ⟩ and |ϕ⟩ only if the states are very nearly
the same, or very close to being orthogonal. In all other cases at least one of the two states
will be badly copied.

If this were the whole picture, then we would not be having researchers and companies
interested in quantum computing. Though we can not get all the values of f(x) we can
do something clever and interesting. Here, the skill and art of algorithmic thinking come
into play. Alongside Uf , one could add several other unitaries cleverly such that when the
final measurement is done, one could extract useful information about "relations" between
the values of f for several different x, which a classical computer could get only by making
several independent evaluations. The price one inevitably pays for this relational informa-
tion is the loss of the possibility of learning the actual value f(x) for any individual x.
This tradeoff of one kind of information for another is typical of quantum computation and
typical of quantum physics in general, where it is called the uncertainty principle, stated by
Werner Heisenberg in the context of the position of a particle versus its momentum.

In the following chapters, we will have a glimpse into the art of designing algorithms in
quantum computers with an advantage over their classical counterparts.

4.7 Building a Qubit
Among the diverse hardware platforms being explored for quantum computing, supercon-
ducting circuit architectures have emerged as a front-runner. These systems, formally known
as circuit quantum electrodynamics (cQED)5 devices, harness the quantum dynamics of mi-
crowave photons and electrical currents within superconducting circuits to create, control,
and read out quantum information. Their key advantage lies in their design flexibility and
potential for scaling to large numbers of qubits.

Circuit QED devices are most often formed by embedding a special kind of superconducting
device, known as a Josephson junction, into complex systems of circuitry, further embedded
with superconductors for minimising dissipative losses. Josephson junction6 can be intu-
itively imagined as a non-linear induction circuit, which helps in the physical realisation of
quantum states. It is made by sandwiching a thin layer of a nonsuperconducting material
between two layers of superconducting material.

5For an excellent in-depth review, refer to the paper Roth et al. [2023] or the lecture notes Girvin et al.
[2014b].

6The 2025 Nobel Prize in physics has been awarded to John Clarke, Michel H. Devoret and John M.
Martinis for the discovery of macroscopic quantum mechanical tunnelling and energy quantisation in an
electric circuit., check out Physics Nobel – 2025 : Schrödinger’s cat and her laboratory cousins

https://historyofscience.in/2025/10/07/physics-nobel-2025-schrodingers-cat-and-her-laboratory-cousins/

62 Building a Qubit

Ψ0(x)

Ψ1(x)

Ψ2(x)

x

V (x)

Ψ0(x)

Ψ1(x)

Ψ2(x)

x

V (x)

Figure 4.3: LC oscillators: Harmonic and Anharmonic oscillators.

To appreciate the role of the Josephson junction, one must first grasp the fundamentals
of superconductivity. When certain metals and alloys are cooled to extremely low temper-
atures (typically within a few degrees of absolute zero), they undergo a phase transition.
At a specific critical temperature, the material shifts from its normal, resistive state to a
superconducting state, where direct electrical current flows with zero resistance. Below this
temperature, the subtle interaction between electrons and the crystal lattice of the metal
becomes attractive, allowing electrons to overcome their natural repulsion and bind together
into what are known as Cooper pairs.

The formation of Cooper pairs opens an energy gap, creating a collective, macroscopic
quantum state, a superfluid of charge that moves without resistance. It is by quantising
the collective electrical degrees of freedom of this superfluid, such as the number of Cooper
pairs on an isolated superconducting island or the magnetic flux threading a loop, that we
can engineer a robust two-level quantum system: the physical realisation of a qubit.

Numerous types of superconducting qubits exist, including the charge qubit, flux qubit,
phase qubit, and fluxonium, each differing in its design and energy scales. A particularly
interesting variant is the transmon, a type of charge qubit formed by two superconducting
islands connected by a Josephson junction. In its simplest form, the transmon is an LC
oscillator, a parallel combination of a capacitor and an inductor. This additionally gets rid
of external fields in the circuitry through the superconducting nature and reduces it to a
single oscillatory degree of freedom.

However, a simple LC circuit is a quantum harmonic oscillator, characterized by an infinite
ladder of equally spaced energy levels. This is unsuitable for a qubit, as a control signal
intended for one transition would excite all of them. This is where the Josephson junction’s
nonlinearity becomes critical. By replacing the standard linear inductor with a junction,
the circuit’s potential energy is no longer a simple quadratic function but instead follows

Overview of Quantum Computer and Quantum Information 63

a cosine dependence on the magnetic flux. This property, known as anharmonicity, breaks
the uniform spacing of the energy levels. It ensures that the energy gap between the ground
state (|0⟩) and the first excited state (|1⟩) is unique, allowing us to selectively address the
|0⟩ ↔ |1⟩ transition with precisely tuned microwave pulses, thereby realizing a high-fidelity
qubit. Fig. 4.3 displays a LC oscillator circuit solution behaving as a harmonic oscillator
with equally spaced energy levels, and an equivalent LC oscillator solution with an inductor
replaced by a Josephson junction behaving as an anharmonic oscillator.

64 FURTHER READING & REFERENCES

Further Reading & References
Scott Aaronson. Quantum computing since Democritus. Cambridge University Press, 2013.

Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Mar-
golus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary
gates for quantum computation. Physical Review A, 52(5):3457–3467, November 1995.
ISSN 1094-1622. doi: 10.1103/physreva.52.3457. URL http://dx.doi.org/10.1103/
PhysRevA.52.3457.

Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and
William K. Wootters. Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70:1895–1899, Mar 1993. doi: 10.
1103/PhysRevLett.70.1895. URL https://link.aps.org/doi/10.1103/PhysRevLett.
70.1895.

Emmanuel Desurvire. Classical and quantum information theory: an introduction for the
telecom scientist. Cambridge university press, 2009.

Richard P Feynman. Simulating physics with computers. In Feynman and computation,
pages 133–153. cRc Press, 2018.

Steven M Girvin et al. Circuit qed: superconducting qubits coupled to microwave photons,
2014a.

Steven M Girvin et al. Circuit qed: superconducting qubits coupled to microwave photons,
2014b.

Morten Kjaergaard, Mollie E Schwartz, Jochen Braumüller, Philip Krantz, Joel I-J Wang,
Simon Gustavsson, and William D Oliver. Superconducting qubits: Current state of play.
Annual Review of Condensed Matter Physics, 11(1):369–395, 2020.

Dan C Marinescu. Classical and quantum information. Academic Press, 2011.

N David Mermin. Quantum computer science: an introduction. Cambridge University Press,
2007.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

John Preskill. Lecture notes for physics 229: Quantum information and computation. Cal-
ifornia Institute of Technology, 16(1):1–8, 1998.

Thomas E Roth, Ruichao Ma, and Weng C Chew. An introduction to the transmon qubit
for electromagnetic engineers. arXiv preprint arXiv:2106.11352, 8:18–72, 2021.

Thomas E. Roth, Ruichao Ma, and Weng C. Chew. The transmon qubit for electromagnetics
engineers: An introduction. IEEE Antennas and Propagation Magazine, 65(2):8–20, April
2023. ISSN 1558-4143. doi: 10.1109/map.2022.3176593. URL http://dx.doi.org/10.
1109/MAP.2022.3176593.

http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1103/PhysRevA.52.3457
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1109/MAP.2022.3176593
http://dx.doi.org/10.1109/MAP.2022.3176593

Overview of Quantum Computer and Quantum Information 65

Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer. SIAM Journal on Computing, 26(5):1484–1509, October
1997. ISSN 1095-7111. doi: 10.1137/s0097539795293172. URL http://dx.doi.org/10.
1137/S0097539795293172.

Robert Sutor. Dancing with qubits. Packt Publishing Birmingham, UK, 2019.

Mahesh T S. PH4323 / PH 6543 Quantum Information. Indian Institute of Science Edu-
cation and Research (IISER) Pune Pune, 2024.

Göran Wendin. Quantum information processing with superconducting circuits: a review.
Reports on Progress in Physics, 80(10):106001, 2017.

http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172

66 FURTHER READING & REFERENCES

Part II

Quantum Computing

67

Chapter 5

Basic Quantum Algorithms

“For me, great algorithms are the poetry of computation. Just like verse, they can
be terse, allusive, dense, and even mysterious. But once unlocked, they cast a
brilliant new light on some aspect of computing.”

– Francis Sullivan, The Joy of Algorithms

5.1 Some Basic Functions
As we saw in chapter 4, the way to construct a function f is by constructing a unitary Uf

such as the one shown in Fig. 5.1. If y = 0 then the output register holds |x⟩ ⊗ |f(x)⟩, thus
we have computed f(x). In this section, we will see how to design Uf , by using the basic
gates we defined in Sec. 4.3 for some simple functions f . Also, recall that the function is
from {0, 1}n to {0, 1}.

|x⟩
Uf

|x⟩

|y⟩ |y ⊕ f(x)⟩

Figure 5.1: Unitary to represent a function

5.1.1 Constant Function
Let’s first look at the following table:
In order to construct any function, it helps to write such a table and then think what should
Uf be so that the output register is of the form |x⟩ ⊗ |y ⊕ f(x)⟩.

69

70 Some Basic Functions

x f(x) 0 ⊕ f(x) 1 ⊕ f(x)
0 0 0 1
1 0 0 1

f(x) = 0

Now, it is easy to see why Uf = I works in this case.

|x⟩

|y⟩

|x⟩

|y ⊕ 0⟩

Figure 5.2: Circuit representing constant function f(x) = 0

What if f(x) is 1?

Doing the same exercise done for f(x) = 0 again we find:
x f(x) 0 ⊕ f(x) 1 ⊕ f(x)
0 1 1 0
1 1 1 0

f(x) = 1
Thus, the same circuit given for f(x) = 0 works for f(x) = 1.

5.1.2 Identity Function
Again, let’s look at the table:

x f(x) 0 ⊕ f(x) 1 ⊕ f(x)
0 0 0 1
1 1 1 0

f(x) = x

Now, it is easy to see why Uf = cNOT works in this case.

Is cloning achieved with the Identity function?

The answer is No! If f is the identity function, f(x) = x. Thereby, the unitary is

Uf (|x⟩|0⟩) = |x⟩|x⟩

Basic Quantum Algorithms 71

|x⟩ |x⟩

|y⟩ |y ⊕ x⟩

Figure 5.3: Circuit representing identity function f(x) = x

Now, let |x⟩ = a|0⟩ + b|1⟩. We have the action of the unitary,

Uf |x⟩|0⟩ = Uf ((a|0⟩ + b|1⟩)(|0⟩)) = Uf (a|00⟩ + b|10⟩)
= a|0⟩|0 ⊕ f(0)⟩ + b|1⟩ | 0 ⊕ f(0)
= a|0⟩|0⟩ + b|1⟩|1⟩ = (a|00⟩ + a|11⟩)

However, for the product state,

(a|0⟩ + b|1⟩)(a|0⟩ + b|1⟩) =
(
a2|00

)
+ ab|01⟩ + ba|10⟩ + b2|11⟩

Thereby, we do not have the cross terms from the unitary. Therefore, we have not
cloned |x⟩.

5.1.3 Swap

swap

H

H

Figure 5.4: Circuit representing Swap operation

5.1.4 Is such a unitary always possible?
The computational process generally requires more registers apart from the input and out-
put registers for workspace. In general, the input and output registers will become entangled
with the states of the additional r qubits. In this case, we cannot have a unitary Uf that
relates only the input and output state, as shown in 5.1. If the action of the computer
on all n + m + r qubits has a special form such that at the end of the computation, the
workspace registers are not entangled with the input-output qubits and have a state that is
independent of the initial state of the input and output qubit, then having such a unitary
Uf is possible.

72 Deutsch’s Problem

A quantum unitary Wf applies to all the registers, say n+m+ r, the input, output, and
workspace. One can achieve this by simply taking advantage of the fact that unitary trans-
formations are reversible.

• Apply a unitary Vf only on n + r qubits and store f(x) in m-qubits of the n + m
qubits. As the m output qubits are untouched, they are not entangled with the input
and workspace qubits.

• Change output register y to y ⊕ f(x) by applying m cNOT gates,Cm.

• Since the state of the n + r qubits is not altered by the application of Cm, we can
inverse the transformation V† to restore them to their original state.

Note that in the above process (also shown in Fig. 5.5), as the workspace registers are
restored back, they are neither entangled nor dependent on the input and output states.
Thus, we can safely use the above trick and talk about Uf (as in Fig. 5.1) every time.

|ψx⟩n+r−m

|f(x)⟩m |f(x)⟩m

|ψ⟩r
Vf V †

f

|ψ⟩r

|x⟩n
Cm

|x⟩n

|y⟩m |y ⊕ f(x)⟩m

Figure 5.5: Circuit to disentangle workspace registers

To illustrate this, let us examine the example of the quantum 1-bit adder circuit. The cir-
cuit, along with a carry qubit, which is the additional work space qubit, is given in figure 5.6.
One can verify that this circuit performs the bitwise addition of the two qubits |x1⟩ and
|x2⟩, storing the carry bit as |C⟩, and final sum as |S⟩, replacing |x2⟩.

To write this circuit with a disentangled workspace qubit, we add cNOT with Vf and V †
f

parts, as shown in figure 5.7.

5.2 Deutsch’s Problem
Problem Statement: Given a function f : {0, 1} → {0, 1} find if f is a constant function
or not.

Classical Algorithm: Compute the value of f on both 0 and 1 and compare the values.
This takes two computations of the function f .

Basic Quantum Algorithms 73

|x1⟩ |x1⟩

|x2⟩ |S⟩

|0⟩ |C⟩

Figure 5.6: Quantum 1-bit Half Adder

Vf V †
f

C1

|0⟩ |0⟩

|x1⟩ |x1⟩

|x2⟩ |x2⟩

|y⟩ |y ⊕ (x1 ⊕ x2)⟩

Figure 5.7: 1-Bit adder with disentangled workspace register

74 Deutsch’s Problem

One can not do any better on a classical computer. But with a quantum computer, can we
do better? That is, find if f(0) and f(1) are different just with one query to Uf?

Quantum Algorithm:

|0⟩ X H

Uf

H

|0⟩ X H

Figure 5.8: Deutsch’s Algorithm

Therefore, the overall action of these gates is,

(H ⊗ 1)Uf (H ⊗ H)(X ⊗ X)(|0⟩|0⟩)

=
{

|1⟩ 1√
2 (|f(0)⟩ − |f̃(0)⟩), f(0) = f(1),

|0⟩ 1√
2 (|f(0)⟩ − |f̃(0)⟩), f(0) ̸= f(1).

Thus, the state of the input register determines whether the function is constant or not,
with a single computation of the functional value of the input state |00⟩.

Discussion: Note that there are only 4 possible functions f : {0, 1} → {0, 1} represented
by the 4 circuits given below 5.9. Suppose we are given this Uf as a black box; that is, we
do not know which one of these four is our function; how will we find f? We can let the
black box act twice, once on the state |0⟩ |0⟩ and once on |1⟩ |0⟩ and find f . Similar to when
we have a classical black box that computes the value of f , we need to query it twice to find
f(0) and f(1) in order to say if the function is constant or not.

Instead, by creating an equal superposition of |0⟩ and |1⟩, we can create an equal superpo-
sition of f(0) and f(1) with one call to the oracle. But note that if you measure the state
now, it collapses to either f(0) or f(1), and from the 4 circuits in Fig. 5.9, we can only
narrow down to 2, but still, we have equal probability of the function being constant or not.

We do not wish to know the exact functional value of f(0) or f(1). So cleverly we trade off
this information to get to know whether f is constant or balanced. Consider applying the
following gates to the input qubits,

(H ⊗ H)(X ⊗ X)(|0⟩|0⟩) = (H ⊗ H)(|1⟩|1⟩) =
(

1√
2

|0⟩ − 1√
2

|1⟩
)(

1√
2

|0⟩ − 1√
2

|1⟩
)

= 1
2(|0⟩|0⟩ − |1⟩|0⟩ − |0⟩|1⟩ + |1⟩|1⟩).

And now apply Uf

1
2

(
Uf (|0⟩|0⟩) − Uf (|1⟩|0⟩) − Uf (|0⟩|1⟩) + Uf (|1⟩|1⟩)

)
.

Basic Quantum Algorithms 75

f(0) f(1)

|x⟩
Uf

|x⟩

∣∣∣y〉
∣∣∣y ⊕ f (x)〉

|x⟩ |x⟩

∣∣∣y〉
∣∣∣y〉

0 0

|x⟩
Uf

|x⟩

∣∣∣y〉
∣∣∣y ⊕ f (x)〉

|x⟩ |x⟩
∣∣∣y〉 X X

∣∣∣y ⊕ x〉
0 1

|x⟩
Uf

|x⟩

∣∣∣y〉
∣∣∣y ⊕ f (x)〉

|x⟩ |x⟩
∣∣∣y〉 X

∣∣∣y ⊕ 1〉
1 0

|x⟩
Uf

|x⟩

∣∣∣y〉
∣∣∣y ⊕ f (x)〉

|x⟩ |x⟩
∣∣∣y〉 X

∣∣∣y ⊕ 1〉
1 1

Figure 5.9: Circuits showing all possible functions f : {0, 1} → {0, 1}.

76 Deutsch’s Problem

1
2

(
|0⟩|f(0)⟩ − |1⟩|f(1)⟩ − |0⟩|f̃(0)⟩ + |1⟩|f̃(1)⟩

)
,

where, x̃ = 1⊕x so that 1̃ = 0 and 0̃ = 1, and f̃(x) = 1⊕f(x). So if f(0) = f(1) the output
state is

1
2(|0⟩ − |1⟩)(|f(0)⟩ − |f̃(0)⟩), f(0) = f(1),

but if f(0) ̸= f(1) then f(1) = f̃(0), f̃(1) = f(0), and the output state becomes

1
2(|0⟩ + |1⟩)(|f(0)⟩ − |f̃(0)⟩), f(0) ̸= f(1).

Note that the first qubit in both these cases is orthogonal to the other. Also, they are
nothing but the eigenvalues of the Pauli X operator. At this state, one could either directly
measure the 1st qubit in the X basis or apply the Hadamard transformation to the input
register and measure in the standard computational basis.

|1⟩ 1√
2

(|f(0)⟩ − |f̃(0)⟩), f(0) = f(1),

|0⟩ 1√
2

(|f(0)⟩ − |f̃(0)⟩), f(0) ̸= f(1).

Remarks. One could just apply the X gate to the second qubit and not the first qubit. In
this case, the same calculation holds, and the only change is that the value of the first qubit
will be |0⟩ when f is constant and |1⟩ when f is balanced.

Remarkably, with a quantum computer, we did not have to run Uf twice to determine
whether or not f is constant. We could do this in a single run. Interestingly, when we did
this, we learned nothing about the individual values of f(0) and f(1), but we were never-
theless able to answer the question about their relative values: whether or not they are the
same. Thus, we get less information than we get in answering the question with a classical
computer, but by renouncing the possibility of acquiring that part of the information that
is irrelevant to the question we wish to answer, we can get the answer with only a single
application of the black box.

In Fig. 5.9, we saw the equivalent circuit representation of the 4 possible functions f :
{0, 1} → {0, 1}. Applying Hadamard gates to each qubit, both before and after the applica-
tion of Uf , must produce exactly the same result as it would if the Hadamards were applied
to the equivalent circuits. After applying Hadamad, the resulting circuit will look like the
circuit shown in Fig. 5.10

The Fig. 5.10 shows explicitly that when Uf is sandwiched between Hadamards, the input
register ends up in the state |0⟩ if f(0) = f(1) and in state |1⟩ if f(0) ̸= f(1)

Hadamard swaps the control and target

Notice that in the Circuit 5.10, after application of the Hadamard operator, the
control and target qubits of the cNOT gate have swapped.

Basic Quantum Algorithms 77

f(0) f(1)

|x⟩ H

Uf

H |x⟩

∣∣∣y〉 H H
∣∣∣y ⊕ f (x)〉

|x⟩ |x⟩

∣∣∣y〉
∣∣∣y〉

0 0

|x⟩ H

Uf

H |x⟩

∣∣∣y〉 H H
∣∣∣y ⊕ f (x)〉

|x⟩ X
∣∣∣x⊕ y ⊕ 1〉

∣∣∣y〉
∣∣∣y〉

0 1

|x⟩ H

Uf

H |x⟩

∣∣∣y〉 H H
∣∣∣y ⊕ f (x)〉

|x⟩ X |x⊕ 1⟩

∣∣∣y〉 Z
∣∣∣y〉

1 0

|x⟩ H

Uf

H |x⟩

∣∣∣y〉 H H
∣∣∣y ⊕ f (x)〉

|x⟩ |x⟩
∣∣∣y〉 Z

∣∣∣y ⊕ 1〉
1 1

Figure 5.10: Equivalent circuit for Deutsch algorithm

78 Deutsch–Jozsa Problem

5.3 Deutsch–Jozsa Problem

Deutsch–Jozsa Problem is a natural extension of Deutsch’s Problem to an n-bit function.
We say f : {0, 1}n → {0, 1} is constant if f(x) = c for all x ∈ {0, 1}n, where c is a fixed
constant which is either 0 or 1. And we say f is balanced when exactly half of the 2n inputs
map to 0 and the other half map to 1.

Problem Statement: Given a function a n-bit function, f : {0, 1}n → {0, 1}, that is
promised to be either constant or balanced. Determine if f is constant or balanced?

Classical Algorithm: We should compute the function on at least 2n−1 + 1 inputs,
that is, at least 1 more than half the inputs, in the "worst-case" to find if f is constant or
balanced. If we are lucky on the second or third computation of f , we might find that the
functional value of f does not match the previously computed functional values of f . In
this case, we can directly halt after just 2 to 3 computations of the function. But in the
worst-case it may so happen that all the first 2n−1 inputs turn out to be the same value. In
this case, unless we compute at least one more input, we cannot certainly say if the function
is constant or balanced. Thus, a classical computer needs at least 2n−1 + 1 queries.

Can we do better? Like Deutsch’s problem, is there a way to magically get to know this in
just one query on a quantum computer? The answer turns out to be yes!

Quantum Algorithm:

n|0⟩n H⊗n

Uf

H⊗n

|0⟩ X H

Figure 5.11: Deutsch–Jozsa Algorithm

Deutsch–Jozsa algorithm is just the application of the Deutsch algorithm, but on n input
qubits as opposed to 1.

Hadamard on n-qubits

The action of H on a single qubit can be compactly summarised as

H|x⟩1 = 1√
2

(|0⟩ + (−1)x|1⟩) = 1√
2

1∑

y=0
(−1)xy|y⟩

If we apply H⊗n to an n-qubit computational-basis state |x⟩n we can therefore

Basic Quantum Algorithms 79

express the result as

H⊗n|x⟩n = 1
2n/2

1∑

yn−1=0
· · ·

1∑

y0=0
(−1)

∑n−1
j=0

xjyj |yn−1⟩ · · · |y0⟩

= 1
2n/2

2n−1∑

y=0
(−1)x·y|y⟩n

Doing the calculation similar to how we did for the Deutsch problem, the final state of the
first n-qubits will be

∑

z

∑

x

(−1)x·z+f(x)|z⟩
2n

[|0⟩ − |1⟩√
2

]

Note that if f is a constant function, then the amplitude of |0⟩⊗n is ±1 depending on the
value of f . This means that when measuring the first n-qubits, the probability of getting
anything except all 0s is zero. But if the function is balanced, equal 1s and 0s will make the
amplitude of |0⟩⊗n vanish. Thus, in this case, the probability of getting all 0s on measuring
the first n-qubits is zero. Thus we are able to say if the function is balanced or constant in
one computation of f .

5.4 Bernstein Vazirani Problem

Problem Statement: f : {0, 1}n → {0, 1}n such that f(x) = x.a (x.a is bitwise modulo-2
inner product). The goal is to find a, given we have a black box that evaluates f(x) = x.a.

Classical Algorithm: The mth bit of a is a · 2m, since the binary expansion of 2m has 1
in position m and 0 in all the other positions. So with a classical computer, we can learn the
n bits of a by applying f to the n values x = 2m, 0 ≤ m < n. As only one bit of information
is provided in each query, no classical algorithm can do better than this.

Whereas with a quantum computer, a single invocation is enough to determine a completely,
regardless of how bign is!

Quantum Algorithm:

n|0⟩n H⊗n

Uf

H⊗n

|0⟩ X H H

Figure 5.12: Bernstein Vazirani Algorithm

80 Bernstein Vazirani Problem

The overall circuit does the following,

H⊗(n+1)UfH⊗(n+1)|0⟩n|1⟩1 = |a⟩n|1⟩1,

where measuring the first n-qubits gives the required a in one computation of the function.
Discussion: This time, let us take a circuit theory approach to design the necessary quan-
tum circuit. Suppose a = 10010, here our function f is assumed to be an n = 4 bit function.
When f(x) = a ·x, the action of Uf on the computational basis is to flip the 1-qubit output
register once, whenever a bit of x and the corresponding bit of a are both 1. When the state
of the input register is |x⟩n this action can be performed by a collection of cNOT gates all
targeted on the output register. There is one cNOT for each nonzero bit of a, controlled
by the qubit representing the corresponding bit of x. The combined effect of these cNOT
gates on every computational basis state is precisely that of Uf . Therefore, the effect of
any other transformations preceding and/or following Uf can be understood by examining
their effect on this equivalent collection of cNOT gates, even though Uf may actually be
implemented in a completely different way.

a4 = 0 |x4⟩ |x4⟩
a3 = 1 |x3⟩ |x3⟩
a2 = 0 |x2⟩ |x2⟩
a1 = 0 |x1⟩ |x1⟩
a0 = 1 |x0⟩ |x0⟩

|y⟩ |y ⊕ f(x)⟩

Figure 5.13: Circuit of f(x) = x · a for a given a = 10010

Since we have no control over what the value of a can be, we wish to take away the control
from a (pun intended!). We have seen that we can flip the control and target qubits by
application of Hadamard gates.

After this reversal of target and control qubits, the output register controls every one of the
cNOT gates, and since the state of the output register is |1⟩, every one of the NOT operators
acts. That action flips just those qubits of the input register for which the corresponding
bit of a is 1 . Since the input register starts in the state |0⟩n, this changes the state of each
qubit of the input register to |1⟩, if and only if it corresponds to a nonzero bit of a. As a
result, the state of the input register changes from |0⟩n to |a⟩n.
Algebraically, as always, we start with an equal superposition of the input registers and
apply Uf . Now we apply Hadamard again as this will give the form x · (a + y) as an
exponent to -1, helping to capture only those ys that are equal to a.

(
H⊗n ⊗ 1

)
Uf

(
H⊗n ⊗ H

)
|0⟩n|1⟩1

Basic Quantum Algorithms 81

a4 = 0 |0⟩ H H

a3 = 1 |0⟩ H H

a2 = 0 |0⟩ H H

a1 = 0 |0⟩ H H

a0 = 1 |0⟩ H H

|1⟩ H H

=

Figure 5.14: Sandwitching cNOT between Hadamard

=
(
H⊗n ⊗ 1

)
Uf

(
1

2n/2

2n−1∑

x=0
|x⟩
)

1√
2

(|0⟩ − |1⟩)

= 1
2n/2

(
H⊗n

2n−1∑

x=0
(−1)f(x)|x⟩

)
1√
2

(|0⟩ − |1⟩)

= 1
2n

2n−1∑

x=0

2n−1∑

y=0
(−1)f(x)+x·y|y⟩ 1√

2
(|0⟩ − |1⟩).

We do the sum over x first. If the function f(x) is a · x then this sum produces the factor

2n−1∑

x=0
(−1)(a−x)(−1)(y−x) =

n∏

j=1

1∑

xj=0
(−1)(aj+yj)xj

At least one term in the product vanishes unless every bit yj of y is equal to the corresponding
bit aj of a−, i.e. unless y = a. Therefore, the entire computational process reduces to

H⊗(n+1)UfH⊗(n+1)|0⟩n|1⟩1 = |a⟩n|1⟩1,

Final H to the 1-qubit output register to make the final expression look neater and more
symmetric.

Thus, all n bits of the number a can now be determined by measuring the input register,
even though we have called the subroutine only once!

Why can not we do the same swapping cNOT technique classically?

Interestingly, quantum computers can do this only because it allows the reversal
of the control and target qubits of a cNOT operation solely by means of 1-qubit

82 Simon’s Problem

(Hadamard) gates. One can also reverse control and target bits of a cNOT classically,
but this requires the use of 2-qubit SWAP gates, rather than 1-qubit Hadamards.
You can confirm for yourself that this circuit-theoretic solution to the Bernstein-
Vazirani problem no longer works if one tries to replace all the Hadamard gates by
any arrangement of SWAP gates.

5.5 Simon’s Problem
Problem Statement: f : {0, 1}n → {0, 1}n−1, a two to one function, such that f(x⊕a) =
f(x). Find the period a, given a black box that computes f .

Classical Algorithm: With a classical computer, we can keep computing f until we
by chance encounter xi and xj such that both give the same f(x). Then we know that
a = xi ⊕xj . At any stage of this process, if we pick m different xks such that none have the
same functional value, all we can say is, for any pair xi ⊕ xj ̸= a. In this way we can reject
at most

(
m
2
)

= m(m+1)
2 values of a. There are 2n−1 possible values for a, so m should be as

big as 2n−1 to narrow down to one value of a. So, it needs exponentially many calls to the
black box to compute a. Whereas we can compute a with just linear calls using a quantum
computer.

Quantum Algorithm:

n

n−1

|0⟩n H⊗n

Uf

H⊗n

|0⟩n−1

Figure 5.15: Simon’s Algorithm

At every invocation of Uf , we get non-trivial information about a. With O(n) many invo-
cations, we can with high probability find a.

Discussion: Let’s start with an equal superposition of all input states. On applying Uf

to this, we get each of the terms in the equal superposition to be of the form |x⟩ |f(x)⟩.
Now, if we measure it collapses to a particular f(x0) and two different x, that is, x0 and
x0 ⊕ a, gives the same f(x0) (as f is a two-to-one function mapping n bit strings to n − 1
bit strings). So, on measurement of the output qubit, the input qubit now collapses to an
equal superposition of these two values of x.

1√
2

(|x0⟩ + |x0 ⊕ a⟩)

With the input register in the above state, we apply the n-fold Hadamard transformation

Basic Quantum Algorithms 83

H⊗n.

H⊗n 1√
2

(|x0⟩ + |x0 ⊕ a⟩) = 1
2(n+1)/2

2n−1∑

y=0

(
(−1)x0·y + (−1)(x0⊕a)·y

)
|y⟩.

Since (−1)(x0⊕a)·y = (−1)x0·y(−1)a·y, the coefficient of |y⟩ is 0 if a · y = 1 and 2(−1)x0·y if
a · y = 0. Therefore

1
2(n−1)/2

∑

a·y=0
(−1)x0·y|y⟩

where the sum is now restricted to those y for which the modulo- 2 bitwise inner product
a · y is 0 rather than 1 . So, if we now measure the input register, we learn (with equal
probability) any of the values of y for which a · y = 0 i.e. for which

n−1∑

i=0
yiai = 0(mod2)

where ai and yi are corresponding bits in the binary expansions of a and y. Thus, each time
we get non-trivial information about a. One can prove that with O(n) many invocations of
Uf with high probability one can find the value of a. 1

To avoid non-local application of unitary

Most often, it is hard to have control gates between qubits that are spatially sepa-
rated. In this case, we can measure the control qubit and classically communicate
its value to the target qubit. This can be done because figures (i) and (ii) are
essentially equivalent.

|a⟩ Y

|b⟩

(i) non-local controlled unitary

classical communication

|a⟩ Y

|b⟩

(ii) classical communication

To see their equivalence, consider a general 2-qubit state:

a00|00⟩ + a10|10⟩ + a01|01⟩ + a11|11⟩
= (a00|0⟩ + a10|1⟩) |0⟩ + (a01|0⟩ + a11|1⟩) |1⟩

≡ A0
(a00|0⟩ + a10|1⟩)

A0
|0⟩ +A1

(
a01|0⟩ + a11|1⟩

A1

)
|1⟩

|ψ⟩ ≡ A0 |ϕ0⟩ |0⟩ +A1 |ϕ1⟩ |1⟩

Where A0 and A1 are appropriate normalization constants.

1For more detail on the complexity refer to the paper Koiran et al. [2007]

84 Simon’s Problem

Non-local application of controlled unitary

U |ψ⟩ = A0 |ϕ0⟩ |0⟩ +A1V1 |ϕ1⟩ |1⟩

where U = I ⊗ V1. If b = 1, then the 1st qubit collapses to V1 |ϕ1⟩ and this happens
with probability |A1|2. If b = 0, then the 1st qubit collapses to |ϕ0⟩ with probability
|A0|2.

Measurement and classical communication
If we measure |b⟩ then we will get 1 with probability |A1|2 and 0 with probability
|A0|2. When we communicate this information classically to Y . This also gives the
same probabilities for V1 |ϕ1⟩ and |ϕ0⟩, showing the equivalence.

Basic Quantum Algorithms 85

Further Reading & References
Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on

Computing, 26(5):1411–1473, 1997. doi: 10.1137/S0097539796300921. URL https://
doi.org/10.1137/S0097539796300921.

Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms
revisited. Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 454(1969):339–354, 1998.

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation.
Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,
439(1907):553–558, 1992.

Pascal Koiran, Vincent Nesme, and Natacha Portier. The quantum query complexity of
the abelian hidden subgroup problem. Theoretical Computer Science, 380(1):115–126,
2007. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2007.02.057. URL https://
www.sciencedirect.com/science/article/pii/S0304397507001612. Automata, Lan-
guages and Programming.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

John Preskill. Lecture notes for physics 229: Quantum information and computation. Cal-
ifornia Institute of Technology, 16(1):1–8, 1998.

Daniel R. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997. doi: 10.1137/S0097539796298637. URL https://doi.org/10.
1137/S0097539796298637.

https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://www.sciencedirect.com/science/article/pii/S0304397507001612
https://www.sciencedirect.com/science/article/pii/S0304397507001612
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1137/S0097539796298637

86 FURTHER READING & REFERENCES

Chapter 6

Quantum Fourier Transform
and Shor’s Algorithm

”There cannot be a language more universal and more simple, more free from
errors and obscurities, more worthy to express the invariable relations of all natural
things[than mathematics]. [It interprets] all phenomena by the same language, as
if to attest the unity and simplicity of the plan of the universe, and to make still
more evident that unchangeable order which presides over all natural causes.”

– Joseph Fourier, The Analytical Theory of Heat

The problem of how to factor a large integer efficiently has been studied extensively in
number theory. It is generally believed that factorization of a number n is hard to do in
an efficient way. That is, it cannot be done in a number of steps which is polynomial in
the length of the integer we’re trying to factor. The RSA cryptosystem, among others,
relies on the presumed difficulty of this task. Classically, the fastest known algorithm is the
Number Field Sieve algorithm, which works in super-polynomial but sub-exponential time,
O(en1/3(logn)2/3).

In 1994, Peter Shor discovered an algorithm that can factor numbers in polynomial time,
O(n2 logn log logn), using a quantum computer, a drastic improvement over the existing
classical algorithms. That is, a quantum computer can factor a number exponentially faster
than the best-known classical algorithms.

6.1 RSA Cryptography
For HTTPS on your browser, password managers, VPNs, financial banking, credit card
chip and software licensing, RSA is one of the currently used and most effective public key
cryptography protocols. Can a quantum computer break this protocol, which is robust to
classical computers? Fortunately or unfortunately the answer turns out to be yes!

Suppose Alice and Bob want to communicate. Both Alice and Bob have two keys each, one

87

88 RSA Cryptography

a public key that is publicly available to everyone and a private key that no one other than
the owner knows. One possible scheme to communicate securely is as follows:

Alice Bob

Public Key: E

Private Key: D

Encryption: f(M,E) = CDecryption: g(C,D) = M

C

Figure 6.1: Public Key Cryptography

Bob encrypts his message through the function f , invoking the public key E, and sends the
encrypted message C to Alice. Alice uses the function g to decrypt the message with the
help of her private key D to recover the message. The functions f and g are released publicly
as a part of the protocol. Public key cryptography works on the basis that the function
f is extremely difficult to invert; that is, getting the message M from the chipper text C
is extremely hard. But this becomes easy with D, the private key. Thus, such protocols
heavily rely on the computational hardness of a problem.

The keys for the RSA algorithm are generated in the following way:

• Choose P and Q very large primes. Compute N = PQ.

• N is released as a part of the public key. N will be used as the modulo arithmetic for
both public and private keys. Its length, usually expressed in bits, is the key length.

• Let R = (P − 1)(Q − 1) the totient function. Note that as φ(N) = φ(P) × φ(Q) =
(P − 1)(Q − 1) since φ(P) and φ(Q) are P − 1 and Q − 1 respectively. (Refer to
chapter 1 Sec. 1.6 for the definition of totient function and other basics of number
theory to better understand this section.)

• Choose integer E such that 1 < E < R and E is coprime with R. Note that this
means E ∈ φ(R). E is released as a part of the public key.

• Determine D such that ED mod R = 1, that is D = E−1 mod R, the modular
multiplicative inverse of E mod R. D is the private key.

RSA scheme is as follows:
The decryption works as D is chosen such that ED mod R = 1 =⇒ ED = 1 + xR where
x ∈ Z. Hence, we have,

CD mod N = (ME)D mod N

= MED mod N = (M mod N)(MxR mod N)
= M mod N

Quantum Fourier Transform and Shor’s Algorithm 89

Alice Bob

Public Key: N = PQ,E

Private Key: D

Encryption: ME mod N = CDecryption: CD mod N = M

C

Figure 6.2: RSA

The last line follows from the fact that MR mod N = 1 as R is totient of N .

A malicious Eve can eavesdrop on Alice and Bob’s conversation and get C. But what guar-
antees that she can not get M from C given the protocol N and E?

Classical computers can efficiently compute D such that ED mod R = 1, provided R is
known. So, the real difficulty lies in computing R from E,N , and C, that is, finding the
prime factors of N . So, the security of RSA lies in the fact that factoring is a computation-
ally very hard problem. This is no longer true in the case of a quantum computer.

6.2 Overview of Shor’s Algorithm

6.2.1 Idea behind Shor’s Algorithm
Shor’s algorithm consists of a classical and a quantum part.

Shor’s Algorithm

Classical: Order finding to Factors Quantum: Quantum Fourier Transform

Shor’s algorithm does not allow us to factor a number directly. Instead, it allows us to find
the order of an element a modulo n in polynomial time. This, in quantum computers, is
done using inverse Quantum Fourier Transform as one of the subroutines.

90 Shor’s Algorithm

We will see that finding a factor of n, given the order of some element in Z/nZ can be done
efficiently even on a classical computer, but no efficient algorithm is known for finding the
order of the element.

6.3 Shor’s Algorithm

6.3.1 Pseudo-code
Input: N = PQ where P and Q are primes
Output: P,Q

1. Pick a number a that is coprime with N i.e. their gcd is 1.

2. Find the order R of the function aR mod N .

3. If R is even:

• Define x ≡ aR/2 mod N

• If x+ 1 ̸≡ 0 mod N :
Then the factors P and Q which we are looking for, at least one of them is
contained in {gcd(x+ 1, N), gcd(x− 1, N)}

4. If either of the above two conditions fails, then pick another a and repeat this all over
again.

Remarks. Note that given aR = 1 mod N and r is even we can factor aR − 1 as (aR
2 −

1)(aR
2 + 1) = 0 mod N . If x ≡ aR/2 mod N , then possibly either x − 1 or x + 1 divides

N . But note that the former is not possible as we started with the assumption that the orbit
of a is of size R, so it can not be R/2. If x + 1 divides N we just repeat the process again
(as said in point 4.)

If both the above fails, then either x− 1 or x+ 1 is a multiple of Q and P , where N = QP .
Thus finding {gcd(x+ 1, N), gcd(x− 1, N)} gives P and Q.

Example 6.3.1. Consider factoring 15:

1. Let us pick a = 13, as 13 is coprime with 15.

2. We need to find the order of 13x mod 15. Since R is the smallest number such that

x 0 1 2 3 4 5 6 . . .

13x mod 15 1 13 4 7 1 13 4 . . .

ar ≡ 1 mod N , here r = 4 since the values are periodic about x = 0, 4, 8,

3. R = 4 is even,
Define x = aR/2 mod N = 134/2 mod 15 = 132 mod 15 = 4 mod 15.
Therefore, x ≡ 4 mod 15, hence x+ 1 ≡ 4 + 1 mod 15 ≡ 5 mod 15 ̸≡ 0 mod 15
This implies P or Q is in {gcd(x+ 1, N), gcd(x− 1, N)}
Here gcd(4 + 1, 15), gcd(4 − 1, 15) = 5, 3. So, P = 5 and Q = 3.

Quantum Fourier Transform and Shor’s Algorithm 91

Why can not we implement the above algorithm completely classically?
The reason is that it becomes progressively harder to find the order. We can see this by
looking at the plot between az mod N and z. As the number N grows, the period grows
very quickly, and this function appears more and more aperiodic. For N = 314191, classical
computer runs for about 2 hours in real-time computing. This order-finding part is expedited
by using quantum computers.

x

y = 13x mod 15

N = 15 = 3 × 5, r = 4

x

y = 18x mod 77

N = 77 = 7 × 11, r = 30

x

y = 18x mod 31719

N = 314191, r = 17388

6.3.2 Classical Part of Shor’s Algorithm
In the below section, through Lemma (6.3.1) and Theorem (6.3.3), we will see that, given
a composite number n and the order r of some x ∈ Z/nZ, we can compute gcd(xr/2 ± 1, n)
efficiently using Euclid’s algorithm. This gives a non-trivial factor of n unless r is odd or
xr/2 ≡ −1 mod n. In particular, if n is a semi-prime, i.e., it is a product of two primes p
and q, then Theorem (6.3.3) implies that n will be factored with probability 1

2 .

6.3.2.1 Factoring as Order finding
We will show that the problem of finding a non-trivial factor to n can be reduced (efficiently)
to finding the order of a non-trivial element in Z/nZ.

Lemma 6.3.1. Given a composite number n, and x non-trivial square root of 1 modulo
n, i.e. x2 ≡ 1 mod N but x is neither 1 nor −1 mod n, then either gcd(x − 1, n) or
gcd(x+ 1, n) is a non-trivial factor of n.

Proof. Since x2 ≡ 1 mod n, we have x2 −1 ≡ 0 mod n. Factoring, we get (x−1)(x+1) ≡ 0
mod n. This implies that n is a factor of (x + 1)(x − 1). Since (x ± 1) ̸≡ 0 mod n, n has
a non-trivial factor with x + 1 or x − 1. To find this common factor efficiently, we apply
Euclid’s algorithm to get gcd(x− 1, n) or gcd(x+ 1, n).

Example 6.3.2. Let n = 55 = 5 × 11. We find that 34 is a square root of 1 mod n since
342 = 1156 = 1 + 21 × 55. Computing, we get gcd(33, 55) = 11 and gcd(35, 55) = 5.

Lemma 6.3.2. Let n be odd, then at least half the elements in (Z/nZ)× have even order.

Proof. Suppose ord(x) = r is odd. Then (−x)r = (−1)rxr = (−1)r = −1 mod n. Hence,
−x must have order 2r, which is even. Therefore, at least half the elements in (Z/nZ)×

have even order.

92 Shor’s Algorithm

Equipped with these tools, we will proceed to prove the main result that allows us to reduce
the factorisation of n to find the order of an element in Z/nZ.

Theorem 6.3.3. Let n be an odd integer and let n = pe1
1 p

e2
2 · · · pek

k be the prime factorization
of n. Then the probability that a uniformly randomly chosen x ∈ Z/nZ has even order r
and xr/2 ̸≡ −1 mod n is at least 1 − 1

2k−1 .

Proof. By the Chinese Remainder Theorem, choosing x ∈ (Z/nZ)× (uniform) randomly is
equivalent to choosing xi ∈ (Z/pei

i Z)× for each pi randomly. Let r be the order of x and
let ri be the order of xi. In particular, xr/2 is never 1 mod n. We want to show that the
probability of either r being odd or xr/2 ≡ −1 mod n is at most 1

2k−1 .
Note that r = lcm(r1, r2, . . . , rk) (where lcm denotes the least common multiple). To see
this, xr ≡ 1 mod n, xr ≡ 1 mod pei

i , hence r is a multiple of each ri. It is the least such
number and hence the least common multiple of the ri’s.
Suppose that r is odd. This happens only if all of the ri’s are odd. ri is odd with probability
at most one-half by Lemma (6.3.2). Hence, r is odd with probability at most 1

2k .
Now, suppose that r is even. We still have to worry about the possibility that xr/2 ≡ ±1
mod n. By the Chinese Remainder Theorem, this happens only if xr/2 ≡ ±1 mod pei

i for
every pi. We need to avoid these cases since ≡ +1 means r wasn’t the order, and ≡ −1
doesn’t yield a useful factorisation. The probability of choosing an x such that one of these
two cases happens is 2 · 2−k = 2−k+1.
Combining the probabilities, we get a success probability of at least (1 − 2−k)(1 − 2−k+1) ≥
1 − 3 · 2−k.

By Lemma (6.3.1) and Theorem (6.3.3) , given a composite number n and the order r of
some x ∈ Z/nZ, we can compute gcd(xr/2 ± 1, n) efficiently using Euclid’s algorithm. This
gives a non-trivial factor of n unless r is odd or xr/2 ≡ −1 mod n. In particular, if n is a
semi-prime, i.e., it is a product of two primes p and q, then Theorem (6.3.3) implies that n
will be factored with probability 1

2 .

6.3.3 Quantum part of Shor’s Algorithm
6.3.3.1 Discrete Fourier Transform (DFT)
Let’s start with a familiar idea. Imagine you’re listening to a piece of music. The music is
made up of different notes (frequencies) that together create a melody. Now, if you wanted
to analyze which notes are present, you’d try to pick apart the sound into its individual
frequencies. This is essentially what the Fourier transform does by breaking down a complex
signal into a sum of simple sinusoidal waves, each with its own frequency, amplitude, and
phase.

In the classical setting, when we have a periodic function, say, one that repeats every T
units, the Fourier transform will show us spikes at specific frequencies. The most promi-
nent spike is at the fundamental frequency, which is f0 = 1

T . This is the basic beat of the
function, the frequency at which the pattern repeats. But a typical periodic function isn’t
just a simple sine wave, and might be a more complex shape. This complexity is reflected
in the presence of harmonics, which are spikes at frequencies that are integer multiples of

Quantum Fourier Transform and Shor’s Algorithm 93

the fundamental frequency (i.e., 2f0, 3f0, . . .).

In practice, especially when working with digital data, we use the Discrete Fourier Trans-
form (DFT). The DFT algorithm takes a sequence of data points (samples of our function)
and computes how much of each frequency is present in the signal. When you run a DFT
on a periodic function, you see peaks in the output at the frequencies where the function
has a strong periodic component.

Here is an illustration for y = sin(2πνx), whose Fourier transform DFT ỹ has the peak at
ν. Note that the broadening of the unique peak occurs due to the finiteness of the data
size. There is a single peak since sin(2πνx) has the fundamental mode and no additional
harmonics.

x

y = sin(2πνx)

ν

ỹ = F(y(x))

Figure 6.3: Discrete Fourier Transform of sin function

Now consider the function f(x) = ax mod N where a ∈ Z and N ∈ N, which is periodic
over the scales of N . Decomposing as a DFT, we have the following interpretation.

We note that the peaks of the DFT correspond to the Fourier fundamental frequencies,
which are integral multiples of the period.

We generalize this idea of hunting for fundamental frequencies to a general vector by de-
scribing the DFT as the tool that decomposes a vector of complex numbers into its intrinsic
frequency components. The formal definition of the algorithm is as follows:

Input: A vector of complex numbers x0, x1, . . . , xN−1, where N is a fixed parameter (as-
suming N = 2n).
Output: A vector of complex numbers y0, y1, . . . , yN−1, such that

yk = 1√
N

N−1∑

j=0
e2πijk/Nxj .

Let’s build up the picture step by step. The DFT decomposes the input vector into a linear

94 Shor’s Algorithm

x

y = ax mod N

ν

ỹ = F(y(x))

Figure 6.4: Discrete Fourier Transform of f(x) = ax mod N

combination of complex exponentials. These exponentials, given by the factors e2πijk/N ,
serve as basis functions that oscillate at specific frequencies. For each k, we can think of
e2πik/N as a complex vector with N entries, individually by

vk =
(

1
N
,

1
N
e2πik/N ,

1
N
e4πik/N , . . . ,

1
N
e2πik(N−1)/N

)
.

These N vectors form an orthonormal basis of CN , and can be used to decompose any
vector into components along these vectors. We can directly compute the dot product of
our vector to note the component along the suitable basis vector. When the input signal has
a periodic structure, these basis vectors align with the natural periodicities of the signal,
producing prominent peaks in the output. The term e2πijk/N can be viewed as a rotating
phase factor. For a fixed k, as j runs over the values 0 to N − 1, these exponentials trace
out a complete cycle. When the input signal xj resonates with this cycle (that is, when
the signal contains a frequency component matching k/N), the sum in Equation (6.3.3.1)
reinforces this frequency component, leading to a peak in the output yk.

Remarks. Using the Fast Fourier Transform algorithm (FFT)1, we can do DFT faster.
We will see that during the exercise of making a Quantum Fourier Transform algorithm,
FFT will appear as a byproduct.

6.3.4 Quantum Fourier Transform (QFT)

Similar to DFT definition, QFT on an orthonormal basis |0⟩ . . . |N − 1⟩ is defined to be a
linear operator with the following action on the basis states,

1Check out the YouTube video The Most Important Algorithm Of All Time by Veritasium for an intuitive
discussion of the algorithm.

https://youtu.be/nmgFG7PUHfo
https://youtu.be/nmgFG7PUHfo

Quantum Fourier Transform and Shor’s Algorithm 95

QFT |j⟩ = 1√
2n

2n−1∑

k=0
e2πijk/2n |k⟩.

The action on an arbitrary state may be written as

N−1∑

j=0
xj |j⟩ =

N−1∑

k=0
yk|k⟩,

where yk are DFT of the amplitudes xj . This expression strengthens our understanding of
the basis transformation nature of the algorithm.

Remarks. It is not obvious from the definition of QFT, but this transformation is a unitary
transformation and thus can be implemented as the dynamics for a quantum computer. The
theorem below will show this fact and also give an expression that can be easily interpreted
when designing a quantum circuit for the QFT algorithm.

Can you prove QFT as defined above is unitary?

U |j⟩ = 1√
N

∑N−1
k=0 e2πij·k/N |k⟩ QFT Claim: U is Unitary

U+U = 1
N

(
N−1∑

k=0
e−2πij·k/N ⟨k|

)

N−1∑

k′=0
e+2πij·k′/N |k′⟩




= 1
N

N−1∑

k=0

N−1∑

k′=0
e

2πij
N (k′−k)j ⟨k | k′⟩

= 1
N

N−1∑

k=0
I · 1 = N

N
I = I

We consider N = 2n, n ∈ Z. As earlier, the basis |0⟩ . . . |N − 1⟩ is |0⟩ . . . |2n − 1⟩ thus can be
represented using n bit-string. Thus, |j⟩ = |j1 . . . jn⟩ where j = j12n−1 +j22n−2 + · · ·+jn20.
Also 0.jljl+1 . . . jm is binary fraction jl

2 + jl

22 + · · · + jm

2m−l+1 .

Theorem 6.3.4. (QFT Representation)

|j1, . . . , jn⟩ QFT−−−→ 1
2n/2

[(
|0⟩ + e2πi0.jn |1⟩

) (
|0⟩ + e2πi0.jn−1jn |1⟩

)
· · ·
(
|0⟩ + e2πi0.j1j2···jn |1⟩

)]
.

Proof.

QFT |j⟩ = 1
2n/2

2n−1∑

k=0
e

2πijk
2n |k⟩ = 1

2n/2

1∑

k1=0
· · ·

1∑

kn=0
e

2πij(k12n−1+k22n−2+···+kn20)
2n |k⟩

= 1
2n/2

1∑

k1=0
· · ·

1∑

kn=0
e2πij(k12−1+k22−2+···+kn2−n)|k⟩

96 Shor’s Algorithm

= 1
2n/2

1∑

k1=0
· · ·

1∑

kn=0
e2πij

∑n

l=1
kl2−l

|k1 · · · kn⟩

= 1
2n/2

1∑

k1=0
· · ·

1∑

kn=0

n⊗

l=1
e2πijkl2−l |kl⟩

= 1
2n/2

n⊗

l=1

[1∑

kl=0
e2πijkl2−l |kl⟩

]

= 1
2n/2

n⊗

l=1

(
|0⟩ + e2πij2−l |1⟩

)

= 1
2n/2

[
|0⟩ + e2πi0.jn |1⟩)(|0⟩ + e2πi0.jn−1jn |1⟩) · · · (|0⟩ + e2πi0.j1j2···jn |1⟩

]

Is there a relation between Hadamard operator and QFT?

Consider U |00 . . . 0⟩, where U → QFT

= 1√
N

N−1∑

k=0
e2πijk/N |k⟩

= 1√
N

N−1∑

k=0
1 · |k⟩

The coefficients have become 1 as j · k = j1 · k1 + j2 · k2 · · · jN · kN = 0
So, U |00 . . . 0⟩ = 1√

N

∑N−1
k=0 |k⟩ which is the equal superposition of all basis, which

is nothing but Hadamard on |00 . . . 0⟩.

6.3.4.1 Quantum circuit for implementing QFT

Let the gate Rk denote the unitary transformation, Rk ≡
(1 0

0 e
2πi

2k

)
.

To see that the pictured circuit Fig. 6.5, computes the quantum Fourier transform, consider
what happens when the state |j1 · · · jn⟩ is input. Applying the Hadamard gate to the first
bit produces the state

1√
2
(
|0⟩ + e2πi0.j1 |1⟩

)
|j2 · · · jn⟩,

since e2πi0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled R2 gate
produces the state,

1√
2
(
|0⟩ + e2πi0.j1j2 |1⟩

)
|j2 · · · jn⟩.

Quantum Fourier Transform and Shor’s Algorithm 97

We continue applying the controlled R3, R4 through Rn gates, each of which adds an extra
bit to the phase of the coefficient of the first |1⟩. At the end of this procedure, we have the
state,

1√
2
(
|0⟩ + e2πi0.j1j2···jn |1⟩

)
|j2 · · · jn⟩.

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us in
the state,

1√
22

(
|0⟩ + e2πi0.j1j2···jn |1⟩

) (
|0⟩ + e2πi0.j2 |1⟩

)
|j3 · · · jn⟩,

and the controlled-R2 through Rn−1 gates yield the state,

1√
22

(
|0⟩ + e2πi0.j1j2···jn |1⟩

) (
|0⟩ + e2πi0.j2···jn |1⟩

)
|j3 · · · jn⟩.

We continue in this fashion for each qubit, giving a final state,

1√
2n
(
|0⟩ + e2πi0.j1j2···jn |1⟩

) (
|0⟩ + e2πi0.j2···jn |1⟩

)
· · ·
(
|0⟩ + e2πi0.jn |1⟩

)
.

Swap operations (which are not shown in the figure) are then used to reverse the order of the
qubits, which are simple transmutations of the elements leading to a reverse permutation.
After the swap operations, the state of the qubits is,

1√
2n
(
|0⟩ + e2πi0.jn |1⟩

) (
|0⟩ + e2πi0.jn−1jn |1⟩

)
· · ·
(
|0⟩ + e2πi0.j1j2···jn |1⟩

)
.

· · ·

· · · · · · · · ·

...
...

· · ·

· · ·

|j1
〉

H R2 Rn−1 Rn |0⟩+ e2πi0.j1j2···jn |1⟩

|j2
〉

H Rn−2 Rn−1 |0⟩+ e2πi0.j2···jn |1⟩

|jn−1
〉

H R2 |0⟩+ e2πi0.jn−1jn |1⟩

|jn
〉

H |0⟩+ e2πi0.jn |1⟩

Figure 6.5: Quantum Circuit for QFT

Comparing with Equation (6.3.4), we see that this is the desired output from the quantum
Fourier transform. This construction also proves that the quantum Fourier transform is

98 Shor’s Algorithm

unitary since each gate in the circuit is unitary.

How many gates does this circuit use? We start by doing a Hadamard gate and n − 1
conditional rotations on the first qubit which is a total of n gates. This is followed by a
Hadamard gate and n−2 conditional rotations on the second qubit, for a total of n+(n−1)
gates. Continuing in this way, we see that n+ (n− 1) + · · · + 1 = n(n+1)

2 gates are required,
plus the gates involved in the swaps. At most n

2 swaps are required, and each swap can
be accomplished using three controlled-X gates. Therefore, this circuit provides a O(n2)
algorithm for performing the quantum Fourier transform.

In contrast, the best classical algorithms for computing the discrete Fourier transform on
2n elements are algorithms such as the Fast Fourier Transform (FFT), which compute the
discrete Fourier transform using O(n2n) gates. That is, it requires exponentially more oper-
ations to compute the Fourier transform on a classical computer than it does to implement
the quantum Fourier transform on a quantum computer.

6.3.4.2 FFT from QFT

DFT takes Θ(22n) operations on an input with 2n components. This is quite easy to see if
we look at the 2n × 2n = 22n matrix of DFT:

W = 1√
2n




1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ω2n−1

1 ω2 ω4 ω6 · · · ω2(2n−1)

1 ω3 ω6 ω9 · · · ω3(2n−1)

...
...

...
...

1 ω2n−1 ω2(2n−1) ω3(2n−1) · · · ω(2n−1)(2n−1)



.

If we multiply W with a vector and count the operations, we get the result.

Equation (6.3.4) allows you to take advantage of the fact that the Fourier transformed
|j1, j2, . . . , jn⟩ is made out of n tensored 2 × 1 vectors. So, we process each 2 × 1 vector
independently by performing the following n mappings:

1√
2




|0⟩ + |1⟩
...

|0⟩ + |1⟩


 → 1√

2




|0⟩ + e2πi0.jn |1⟩
...

|0⟩ + e2πi0.j1...jn |1⟩


 .

Each mapping takes a constant number of operations in n as it is simply multiplying a 2×1
vector by a 2 × 2 phase matrix.

Rk =
(1 0

0 e
2πi

2k

)
.

Hence, we perform n matrix-vector multiplication to process a single |j1 . . . jn⟩.

Quantum Fourier Transform and Shor’s Algorithm 99

We know that an arbitrary vector |ψ⟩ on n qubits can be written as a linear combination
of 2n binary kets |j1, j2, . . . , jn⟩. For example, for n = 2, an arbitrary state can be written
as a linear combination of 22 binary kets as follows:

|ψ⟩ = a|00⟩ + b|01⟩ + c|10⟩ + d|11⟩.
Therefore, to transform |ψ⟩ on n qubits, we need to process 2n binary vectors |j1, . . . , jn⟩ by
performing n mappings described above. Since each such binary vector requires n matrix-
vector multiplications, and there are 2n of them, it takes Θ(n2n) operations.

6.3.5 QFT in Shor’s algorithm
For the following section, we will assume that N ′ is a composite odd integer which is not a
power of prime (the algorithm fails otherwise). If N ′ is even, we can just factor out all the
powers of 2 until we get an odd integer, then run the algorithm on the resulting integer. We
can test whether N ′ is a prime efficiently using classical primality tests such as the AKS
test and the Miller-Rabin test 2. We can also test if N ′ is a power of prime efficiently by
taking the kth root of N ′ until k

√
N ′ < 2.

Given N ′, we choose N = 2n such that N ′ < N < 2N ′ (i.e., choose the unique power of 2
in that range). We will be working with two registers (two arrays of qubits), such that each
of them holds n qubits. At first, the registers are |0⟩ ⊗ |0⟩.

We put the first register in the uniform superposition of numbers x mod N by using the
QFT (This is equivalent to applying Hadamard gate to all qubits in the first register),

|0⟩ QFT−−−→ 1√
N

N−1∑

x=0
|x⟩ ⊗ |0⟩.

Now suppose f(x) = ax mod N . Note that the period of f is the same as the order of a,
given by r. Given some base a, can we compute f(x) efficiently? The answer is yes; we can
just exponentiate by repeated squaring!

We need to apply f to the contents of the first register and store the result of f(x) in the
second register. To do so, we can construct f as a quantum function. It turns out that this
is the bottleneck of the algorithm since implementing f on a quantum computer requires a
lot of quantum gates3. Still, Shor’s algorithm is much faster than factoring on a classical
computer.

We have the state 1
N

∑N−1
x=0 |x⟩ ⊗ |f(x)⟩. Apply the inverse QFT to the first register, and

we get

QFT−1 1√
N

N−1∑

x=0
|x⟩ ⊗ |f(x)⟩ = 1√

N

N−1∑

x=0
(QFT−1|x⟩) ⊗ |f(x)⟩ = 1

N

N−1∑

x,y=0
e− 2πixy

N |y⟩ ⊗ |f(x)⟩

2Refer to the phenomenal paper Primes in P by our fellow Indians Manindra, Agrawal and Neeraj, Kayal
and Nitin, Saxena [2002].

3Refer to Shor’s paper Shor [1997].

100 Shor’s Algorithm

Remarks. Note that inverse QFT is equivalent to QFT †, which is the case for every quan-
tum gate.

Measure the second register, then after applying inverse QFT, measure the first register.
Depending on the value do classical processing, as mentioned in Sec. 6.3.1.

...

...

n

|0⟩ H

ax
m
od

N

QFT −1

|0⟩ H

|0⟩ H

|0⟩ H

n

|0⟩

|0⟩

|0⟩

†

Figure 6.6: Quantum Circuit for Shor’s Algorithm

Example 6.3.3. Again consider the number 15 (|1111⟩ in 4 qubits representation). This
time we will use the circuit to factor the number.

1. Start with set of 2 registers at the state |0⟩⊗4 |0⟩⊗4.

2. Now apply Hadamard on the first set of register,
[
H⊗4 |0⟩⊗4

]
|0⟩⊗4 = 1

4 [|0⟩ + |1⟩ + · · · + |15⟩] |0⟩⊗4
.

Here the numbers inside ket are in base 10 representation. In base 2, they are all
possible 4 bitstrings.

3. Applying f(x) on the second register

= 1
4
[
|0⟩ |0 ⊕ 130 mod 15⟩ + |0⟩ |0 ⊕ 131 mod 15⟩ + · · ·

]
.

Quantum Fourier Transform and Shor’s Algorithm 101

Note that 0 ⊕ (i.e. XOR) something is the number itself

= 1
4

[
|0⟩ |1⟩ + |1⟩ |13⟩ + |2⟩ |4⟩ + |3⟩ |7⟩ + (6.1)

|4⟩ |1⟩ + |5⟩ |13⟩ + |6⟩ |4⟩ + |7⟩ |7⟩ + (6.2)
|8⟩ |1⟩ + |9⟩ |13⟩ + |10⟩ |4⟩ + |11⟩ |7⟩ + (6.3)

|12⟩ |1⟩ + |13⟩ |13⟩ + |14⟩ |4⟩ + |15⟩ |7⟩
]
. (6.4)

(6.5)

4. We now measure the second register (This measurement happens before applying in-
verse QFT)
Suppose after measuring second register, we get |7⟩. Implies, we have the superposi-
tion 1

2 [|3⟩ + |7⟩ + |11⟩ + |15⟩] ⊗ |7⟩. Note the normalisation, 1
2 , i.e, probabilities have

changed.

5. Now apply inverse QFT (Equation (6.3.5)) to the first register.
If we apply and compute, we will find that phases will interfere and cancel out. The
only terms which will remain are

= 1
8 [4 |0⟩ + 4i |4⟩ + 4 |8⟩ + 4i |12⟩] .

6. The final step is to measure the first register.
We will get |0⟩ , |4⟩ , |8⟩ or |12⟩ with equal probability of 1

4 .

We have completed the quantum part of Shor’s algorithm. After this, all that is left is doing
the classical post-processing. The measurement results peak near j × N

R for some integer
j ∈ Z.
Analysing the measurement results:

• |0⟩ is trivial. If we measure |0⟩, restart.

• |4⟩ j16/R = 4 One possiblity (the lowest one) is j = 1
Implies R = 4 even, which is good.
x = aR/2 mod N = 134/2 mod 15 = 132 mod 15 = 4 mod 15.
Therefore, x ≡ 4 mod 15 and x+ 1 ≡ 4 + 1 mod 15 ≡ 5 mod 15 ̸≡ 0 mod 15
Thereby, P or Q is in {gcd(x+ 1, N), gcd(x− 1, N)}
Here gcd(4 + 1, 15), gcd(4 − 1, 15) = 5, 3. So, P = 5 and Q = 3.

• For |8⟩ and |12⟩, we get one of the factors, and the algebra works just like above.

Remarks. Note that the above phase cancellations were possible because of interference
which is a quantum phenomenon. This enables a drastic reduction of terms, thus giving an
exponential speed-up compared to classical computers.

It is known that if we repeat the above algorithm O(log log(n)) times and almost guarantee
that we find R4.

4This non-trivial calculation can be found out in great detail in the book Nielsen and Chuang [2011].

102 How complex is Shor’s Algorithm?

6.4 How complex is Shor’s Algorithm?

The bottleneck in the quantum factoring algorithm, i.e., the piece of the factoring algorithm
that consumes the most time and space, is computing the function f(x) = ar mod N mod-
ular exponentiation. The modular exponentiation problem is, given N , x, and r, find xr

mod N . The best classical method for doing this is to repeatedly square of x mod N to
get x2m mod N for m ≤ log2 r, and then multiply a subset of these powers (mod N) to get
xr mod N . If we are working with n−bit numbers, this requires O(n) squaring and mul-
tiplications of n−bit numbers (mod N). Asymptotically, the best classical result for gate
arrays for multiplication is the Schönhage–Strassen5 algorithm. This gives a gate array for
integer multiplication that uses O(n logn log logn) gates to multiply two n−bit numbers.
Thus, asymptotically, modular exponentiation requires O(n2 logn log logn) time. Making
this reversible would naively cost the same amount in space6. However, one can reuse the
space used in the repeated squaring part of the algorithm and thus reduce the amount of
space needed to essentially require for multiplying two n-bit numbers. Thus, modular ex-
ponentiation can be done in O(n2 logn log logn) time and O(n logn log logn) space.

As seen earlier, QFT is O(n2) and repeating the above algorithm 6.3.1 O(log log(n)) times
can almost guarantee that we find r. Overall the time complexity of Shor’s algorithm
is O(n2 logn log logn), which is exponential speed up compared to all classically known
algorithms!

6.5 Quantum Phase Estimation

Problem Statemenrt: Given a unitary operator Uf has an eigenvector |u⟩ with eigen-
value e2πiϕ, where the value of ϕ is unknown. The goal of the phase estimation algorithm
is to estimate ϕ.

Note that given a unitary U (UU∗ = I); we know that all its eigenvalues have norm 1. Since
any complex number can be written as re2πiθ, all eigenvalues of U should be of the form
e2πiθ for some θ. To determine the eigenvalue, it is enough to find this θ. called the phase
of the eigenvalue or eigenbasis.

Quantum phase estimation is a useful subroutine in quantum computing that uses quantum
Fourier transform. Suppose we have black boxes capable of preparing the state |u⟩ and
performing the controlled-U2j operation for suitable non-negative integers j.

The phase estimation subroutine, given a unitary U and its eigenvector |u⟩, finds the phase
of the eigenvalue corresponding to the eigenvector |u⟩. To be precise, the algorithm will
take the eigenvector |u⟩ as input, and it needs the ability to perform controlled U2i(i ≤ k)
operations; using those, it determines the corresponding eigenphase.

5Refer to Schönhage and Strassen [1971].
6Refer to Shor [1997] for more details

Quantum Fourier Transform and Shor’s Algorithm 103

To start with, we will also assume that we have the ability to perform U l for all l ≤ 2k = n

(instead of just controlled U2k
)

. Later we will show that controlled U2i(i ≤ k) operators
can be used to perform U l for all l ≤ 2k.

We will start with the state |0, u⟩, where the first part of the register holds k qubits and
second register holds the eigenvector |u⟩. Then we will apply Hadamard on the first part
and obtain,

1
2k/2

2k∑

l=1
|l, u⟩

Now we can perform the operation |l, u⟩ → |l⟩U l|u⟩. Notice that this can be done classically
on the basis states and hence can be done quantumly.

This gives us the state,

1
2k/2

2k∑

l=1
|l⟩U l|u⟩ = 1

2k/2

2k∑

l=1
e2πiθl|l, u⟩.

Some thought shows that the first part of the register is the Fourier transform of 2kθ. Hence
applying inverse Fourier transform, we get the state

∣∣2kθ
〉
.

1
2t/2

2t−1∑

j=0
e2πiφj |j⟩|u⟩ → |φ̃⟩|u⟩

. . .

. . .

...

. . .

. . .

. . .

. . .

First register t qubits

|0⟩ H |0⟩ e2πi(2
t−1ϕ) |1⟩

|0⟩ H |0⟩ e2πi(2
t−2ϕ) |1⟩

|0⟩ H |0⟩ e2πi(2
0ϕ) |1⟩

|0⟩ H |0⟩ e2πi(2
0ϕ) |1⟩

|0⟩ H |0⟩ e2πi(2
0ϕ) |1⟩

Second register |u⟩ U20 U21 U22 U2t−1 |u⟩

Figure 6.7: Application of controlled-Uk

If we are only given the controlled versions of U2l where l ≤ k, then how can we achieve the
same phase estimation? Notice that l now varies only up to k. Essentially, we are given the

104 Quantum Phase Estimation

power to apply U,U2, U4 . . . , U2k .

The simple idea is to break any integer 0 ≤ h ≤ 2k as powers of 2 . Then using the controlled
version, we can apply Uh.

/

/

|0⟩ H FT †

|u⟩ U j |u⟩

Figure 6.8: Quantum Phase Estimation

Let us see how to take care of the assumptions we made, there are only k bits in the expan-
sion of θ and we have the eigenvector as a quantum state |u⟩.

Most of the time, it is not possible to know the number of digits in the binary expansion
of θ beforehand. What can be done in this case? If we want to approximate θ up to k bits
of accuracy, using the same circuit with k + f(ϵ) qubits instead of k qubits will give us the
answer with probability 1 − ϵ. Here, ϵ should be treated as a parameter, and f(ϵ) is some
function of ϵ.

Suppose we don’t have the eigenvector |u⟩. If the same procedure is done over |ψ⟩ =∑
i αi |ui⟩, we will get the phase corresponding to |ui⟩ with probability |αi|2.

Quantum Fourier Transform and Shor’s Algorithm 105

Further Reading & References
Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman,

Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R.
Johnson, and Jay M. Gambetta. Quantum computing with Qiskit, 2024.

Fang Xi Lin. Shor’s Algorithm and the Quantum Fourier Transform. Lecture notes, 2013.

Manindra, Agrawal and Neeraj, Kayal and Nitin, Saxena. Primes is in p. Ann. of Math, 2
(781–793), 2002.

Gary L. Miller. Riemann’s Hypothesis and Tests for Primality. Journal of Computer and
System Sciences, 1976.

Rajat Mittal. Lectures on Quantum Computing. Indian Institute of Technology (IIT) Kan-
pur, 2023.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

John Preskill. Lecture notes for physics 229: Quantum information and computation. Cal-
ifornia Institute of Technology, 16(1):1–8, 1998.

Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

Schönhage and V. Strassen. Concentration inequalities. Schnelle Multiplikation grosser
Zahlen, Computing, 7(281–292), 1971.

Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer. SIAM Journal on Computing, 26(5):1484–1509, October
1997. ISSN 1095-7111. doi: 10.1137/s0097539795293172. URL http://dx.doi.org/10.
1137/S0097539795293172.

Veritasium. The Most Important Algorithm of all time (Youtube). URL https://youtu.
be/nmgFG7PUHfo?si=hk2J13BhxllU9uTs.

http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
https://youtu.be/nmgFG7PUHfo?si=hk2J13BhxllU9uTs
https://youtu.be/nmgFG7PUHfo?si=hk2J13BhxllU9uTs

106 FURTHER READING & REFERENCES

Chapter 7

Grover’s Search Algorithm

“There are only two tragedies in life: one is not getting what one wants, and the
other is getting it.”

– Oscar Wilde, Lady Windermere’s Fan

7.1 Introduction
The problem of searching through unstructured data is ubiquitous, and any improvement
will help a lot of applications. If it were structured data, like given an ordered list, we could
exploit the order and search faster (like using binary search). But when there is no order
in the list, we have no other option, in a classical computer, other than going through all
elements one by one, making Θ(n) queries to see each element. In quantum computing, we
can do it in O(

√
n) queries1. When the data set is huge, this quadratic ‘speed-up’ over its

classical analogue can save a lot of time. The genius behind the quantum search algorithm
is Lov Kumar Grover2.

In order to better understand the quantum search problem, let us first classically define the
search problem and then look at its quantum counterpart, comparing both using the query
complexity model.

7.2 Query Model of Computation
Imagine your friend Alice has a word from a dictionary in her mind. Your task is to find
this word by asking Alice only yes or no questions. For example, you can ask her, "Is the
word ’exasperation’?" or "Is it between ’exaggerate’ and ’diligent’?" etc. What is the least
number of questions you should ask to find the word?

1Even with the advantage of randomness in classical computing, we can show that we need at least Ω(n)
queries by using Yao’s minimax principle.

2An Indian-American computer scientist who did his undergraduate studies at the Indian Institute of
Technology (IIT), Delhi

107

https://en.wikipedia.org/wiki/Yao%27s_principle

108 Query Model of Computation

In the above scenario, you are trying to search in a structured data. It is structured, as there
is an underlying lexicographic ordering. Also, Alice represents what is called an oracle3.
We know that for such ordered data, we can search classically in O(logn) time, where n
is the number of words in the dictionary, but this is not true for unstructured data. In
the upcoming section, we will formalise the notion of an oracle and look into unstructured
search.

Remarks. Note that here structured data means that you know some predefined information
about the data. For example, if the data is in ascending order, then you can exploit this
information to search faster. Whereas when we say the data is unstructured, this means you
know no predefined information about the data, which you can exploit to search faster.

7.2.1 Classical Oracle
Consider a data set with N elements, for convenience, let N = 2n. One can imagine the
data stored as a list with consecutive elements in a contiguous memory location (this is
generally how any data is stored in a computer). So, associated with each element, there is
an index. One of the elements in this data is "marked", and we are interested in searching
for this element. (For now, let us focus on searching for a single element. There are variants
of Grover’s algorithm where multiple elements can be marked as well. But the essential idea
remains the same in both cases.)

0 . . .

Ω

. . .x = x0 N − 1 = 2n

Figure 7.1: Unordered data with N elements

Suppose x0 is the index of the "marked" element. Note that as N = 2n, the indices can be
n-bit long. Also, notice that there is a one-to-one correspondence between the elements and
the indices. Thus, finding the "marked" element is equivalent to finding x0. Hereby, for the
discussion, let us consider unstructured data.

As the data is unstructured, we know no predefined information. Thus, the classical algo-
rithm to find x0 is to simply go over the data set and check each element one by one. In
terms of the above example, where you were questioning Alice, this time she has a word
from a list of words from many different languages, where the words are jumbled up and
not in any predefined order. Every time you can just ask her, "Is the word in this index?"
or "that index," etc. Only she has access to the list and say yes or no to your questions.

3The word has origins from ancient Greece, where it means advice or information from the gods and
often had a hidden meaning.

Grover’s Search Algorithm 109

Formally, this can be captured by the following function:

f(x) =
{

1, if x = x0 .

0, otherwise.

Here f : {0, 1}n → {0, 1}, a function that maps the n-bit strings indices to 1 or 0. Such a
function is known as black box function.

Note that you do not have explicit knowledge of the function f . As if you did, you would
already know x0. Instead, you only have access to a black box or oracle (for instance, Alice
in the above example) that evaluates f on inputs x of your choice. Your goal is to find x0
with the least number of queries to the black box.

Classically, we have to make, on average, O(N) queries to f in order to find x0.

Remarks. Note that here we are considering the query model of computation. In this model,
only the number of queries matters and not any other computational cost. Note that query
complexity and time complexity are not equivalent, but query complexity gives a lower bound
on the time complexity.

Also, one must note that separations in the query complexity model do not directly imply
separations in the time complexity model.

7.2.2 Quantum Oracle
How should one begin to think about search problems in a quantum computing setting?
In particular, how are the elements represented, and what are the analogous indices here?
What does ’searching’ mean in this context?

In quantum mechanics, everything happens on a Hilbert space. A natural setup is to encode
the indices of the elements as an orthonormal basis of the Hilbert space. So, given N = 2n
elements, let us consider a Hilbert space of dimension N = 2n, with each index encoded
as one of the orthonormal bases. Without loss of generality, these indices can be encoded
as {|0⟩ . . . |N − 1⟩} (tensor product of n-qubits written in shorthand notation). One of the
basis vectors is the index corresponding to the "marked" element, and our task is to find
this. Note the similarity of this with the previously mentioned classical setup.

Initially, we have no clue about the index of the "marked" element. So, a natural starting
point is to start with the state |00 . . . 0⟩ or an equal superposition of all the basis vectors,
say |ϕ⟩.

|ϕ⟩ = 1√
2n
∑

i

|i⟩

The task now is to devise unitary transformations that will transform the state |ϕ⟩ and take
it sufficiently close to the index of the "marked" element (which is one of the orthogonal

110 Grover’s Search Algorithm

basis states) so that when measured, we get this index with a high probability.

In the classical case, each time we made a guess, we had the classical oracle to say if it was
correct or not. To have a quantum analogue of the classical oracle function f , we need to
have a unitary that indicates the state we are looking for. Given f(x), as seen in chapter 5,
we can construct a unitary Uf such that,

Uf |x, b⟩ → |x, b⊕ f(x)⟩

Note that to query the ith position, we can set the input qubits to |i, 0⟩.

Equivalently, if we set b as the |+⟩ or |−⟩ state, then the action of Uf is simply to put a
phase to the input state depending on the f(x) value.

Uf |x⟩ = (−1)f(x)|x,−⟩
Uf |x⟩ = |x,+⟩

Thus, by applying the Hadamard gate to the target qubit b, we can change Uf into an
oracle that does the following:

U′
f |x, b⟩ = (−1)f(x).b |x, b⟩

U′
f is known as the phase oracle.

Thus, when b = 1, the quantum oracle will act on an n-qubit quantum state |x⟩ and add
a negative phase to the state if it is equal to the target state |x0⟩ and leaves it unchanged
otherwise. Like how the classical oracle returned 1 when the state is |x0⟩, the action of
adding negative phase can be thought of as an indication given by the quantum oracle. We
will be using the oracle U′

f in Grover’s algorithm.

7.3 Grover’s Search Algorithm
With the base set-up, our task is to find a unitary transformation that takes |ϕ⟩ = 1√

2n

∑
i |i⟩

to the index of the "marked" element, |x0⟩, given the quantum oracle U′
f .

As |x0⟩ is also one of the basis states, if we measure |ϕ⟩ without doing anything, the prob-
ability that we get |x0⟩ is 1

N , where N = 2n. This probability is very small, and to increase
this, we must transform |ϕ⟩ such that the coefficient of |x0⟩ increases thereby decreasing all
other basis elements’ coefficients.

Let |x⊥
0 ⟩ be an equal superposition of all the unmarked elements, which is orthogonal to

|x0⟩,
|x⊥

0 ⟩ = 1√
N − 1

∑

i̸=x0

|i⟩

Grover’s Search Algorithm 111

and we can write |ϕ⟩ as,
|ϕ⟩ = c1 |x0⟩ + c2 |x⊥

0 ⟩
and our goal it to increase c1 while decreasing c2 using suitable unitary transformation.
So increasing c1 corresponds to moving |ϕ⟩ closer to |x0⟩ on the plane spanned by |x0⟩ and
|x⊥

0 ⟩, as shown in Fig. 7.2.

|x0⟩

|x⊥
0 ⟩

|ϕ⟩

Figure 7.2: Goal is to move |ϕ⟩ closer to |x0⟩

Householder Transformation

• 2 |a⟩ ⟨a| − I is rotation about |a⟩:
One can write out the matrix corresponding to this expression and prove it is a
reflection. Otherwise, intuitively, think about what it means to reflect a vector
about the y-axis in an x − y plane. It can be seen as adding a negative sign
to the orthogonal x-component of that vector. Similarly, in any dimension,
reflection about any state |a⟩ is the same as adding a negative sign to all its
orthogonal states. That is precisely what 2 |a⟩ ⟨a| − I does.

• 2 reflections gives a rotation:
Imagine two lines, L1 and L2 in a 2D plane that intersect at an angle θ between
them. For simplicity, let’s align L1 with the x-axis. This means the angle
between L1 and L2 is simply the angle of L2, which we call θ. Now, take a
vector v⃗. Let’s say it makes an angle α with our first reflection line, L1. When
we reflect v⃗ across L1 (the x-axis), its angle flips from α to −α. Let’s call this
new vector v⃗′. Now, we reflect v⃗′ (at angle −α) across the second line, L2 (at
angle θ). A reflection flips a vector’s angle relative to the reflection axis. The
angle of v⃗′ relative to L2 is (θ − (−α)) = θ + α. To reflect it, we swing it to
the other side of L2 by that same amount. So, the final vector v⃗′′ will be at an
angle of θ+ (θ+α) = 2θ+α. Our original vector v⃗ started at an angle α. The
final vector v⃗′′ is at an angle 2θ + α. The total change is (2θ + α) − α = 2θ.
The state vector lies in the 2D plane spanned by the marked state |x0⟩ and
the unmarked superposition |x⊥

0 ⟩. The two reflections are about the axis |x⊥
0 ⟩

(performed by the oracle) and the axis |ψ⟩ (the initial state). If the angle

112 Grover’s Search Algorithm

between these two reflection axes is α, then one Grover iteration rotates the
state vector by an angle of 2α, moving it closer to the target state |x0⟩.

As the phase oracle adds a negative phase only to |x0⟩ component, its action is precisely
I − 2 |x0⟩ ⟨x0|, equivalently 2 |x⊥

0 ⟩ ⟨x⊥
0 | − I. This is nothing but a reflection about the state

|x⊥
0 ⟩. Note that this does not me we know about |x0⟩, we simply have access to a black box

that can do this for us.

Our goal is to rotate |ϕ⟩, and we have one reflection at hand, so all we need is another
reflection. As two reflections result in a rotation, as explained in the above box. As we do
not have any other information, one natural choice for another axis is to reflect on the equal
superposition state 2 |ψ⟩ ⟨ψ| − I = H⊗n(2 |0⟩ ⟨0| − I)H⊗n, where |ψ⟩ = 1√

2n

∑
i |i⟩.

This rotation that we get by combining both the reflections is called a Grover’s iteration,

G = H⊗n(2 |0⟩ ⟨0| − I)H⊗nU′
f

|x0⟩

|x⊥
0 ⟩

|ψ⟩
|ϕ⟩

U′
f |ϕ⟩

(a) Reflection of |ϕ⟩ about |x⊥
0 ⟩.

|x0⟩

|x⊥
0 ⟩

|ψ⟩

U′
f |ϕ⟩

G |ϕ⟩

θ

θ/2

(b) Reflection of U′
f |ϕ⟩ about |ψ⟩

Figure 7.3: Overall rotation after first iteration of Grover’s algorithm.4

Now we just need to keep rotating the state a sufficient number of times and then measure
it to get |x0⟩, the state we are searching for. Note that for each application of the Grover
iteration G, we invoke the oracle U′

f once. Thus, the number of times we rotate determines
the query complexity of Grover’s algorithm.

Remarks. Given we know we need to move |ϕ⟩ close to |x0⟩, why can’t we move it in one
go? We can not do this as recall we know nothing about f , thus we do not no x0. At each
step, we are using the help of the oracle that puts a negative phase and slowly moves our
vector towards x0. Another visual representation of this process is given in the box below.

4In Fig. 7.3(a), |ϕ⟩ and |ψ⟩ are exactly the same initially. For clarity, they are drawn slightly apart. Also,
the angle θ is exaggerated for illustration. In reality, |ϕ⟩ starts very close to |x⊥

0 ⟩, so the rotation towards
|x0⟩ at each iteration is generally small.

Grover’s Search Algorithm 113

A simple application of Grover’s Search Algorithm

For the sake of understanding, let us assume the coefficients of the basis states
are real (in general, these are complex-valued). If we assume we have 8 elements
and one is marked, then our initial |ϕ⟩ starts off with equal amplitude and has
coefficients like those shown in the figure below.

Density mean = 1√
8 ≈ 0.3536

|000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩

1√
8

0.75

-0.75

The two operations in Grover’s iteration are phase flip and reflection about the mean
(i.e, |ψ⟩). This corresponds to adding a negative sign to the marked amplitude and
flipping about the dotted line shown in the figures below.

Density mean ≈ 0.2652

|000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩

1√
8

0.75

-0.75

Density
mean ≈ 0.3536

|000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩
∼ 0.18

∼ 0.881.0

−0.5

Notice how, after inverting the phase, flipping about the mean increases the ampli-
tude of the marked state while decreasing the amplitude of all other states. This
procedure is applied over and over again, increasing the amplitude of the marked
state till it becomes more than 1/2. As shown in the subsequent section, one can
prove that this method takes

√
N steps to do this.a.

aA more detailed explanation of this way of visualising Grover’s algorithm can be found in the
textbook Dancing with Qubits by Robert S. Sutor.

7.4 Query complexity of Grover’s Search Algorithm

Suppose after k Grover iterations we want the state to be very close to |x0⟩, this implies the
angle between the rotated state and |x⊥

0 ⟩ is very close to π/2. After one Grover iteration,
from the Fig. 7.3, we see that the rotated state is at an angle θ+ θ/2 from |x⊥

0 ⟩. Thus, after

114 Query complexity of Grover’s Search Algorithm

k iterations we have,

kθ + θ

2 ≈ π

2
=⇒ k ≈ π − θ

2θ

As all the state vectors are unit vector |ψ⟩ · |x⊥
0 ⟩ = cos θ/2, this gives θ/2 = cos−1

√
N−1
N .

We are safe to assume the angle θ is small, therefore

1√
N

= sin θ/2 ≈ θ/2

Substituting this we get k = O(
√
n). Thus, in just O(

√
n) queries, we can search the

element, giving a quadratic speed-up compared to the classical computer.

Grover’s Search Algorithm 115

Further Reading & References
3Blue1Brown. But what is quantum computing? Grover’s Algorithm (Youtube). URL

https://youtu.be/RQWpF2Gb-gU?si=Mzo_jhpve4u5dVeG.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

Lov K. Grover. A fast quantum mechanical algorithm for database search, 1996. URL
https://arxiv.org/abs/quant-ph/9605043.

Lov K Grover. From schrödinger’s equation to the quantum search algorithm. Pramana, 56
(2–3):333–348, February 2001. ISSN 0973-7111. doi: 10.1007/s12043-001-0128-3. URL
http://dx.doi.org/10.1007/s12043-001-0128-3.

Rajat Mittal. Lectures on Quantum Computing. Indian Institute of Technology (IIT) Kan-
pur, 2023.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

John Preskill. Lecture notes for physics 229: Quantum information and computation. Cal-
ifornia Institute of Technology, 16(1):1–8, 1998.

Robert Sutor. Dancing with qubits. Packt Publishing Birmingham, UK, 2019.

https://youtu.be/RQWpF2Gb-gU?si=Mzo_jhpve4u5dVeG
https://arxiv.org/abs/quant-ph/9605043
http://dx.doi.org/10.1007/s12043-001-0128-3

116 FURTHER READING & REFERENCES

Chapter 8

Variational Quantum
Algorithms

“If one proves the equality of two numbers a and b by showing first that a is
less than or equal to b; and then a is greater than or equal to b, it is unfair, one
should instead show that they are really equal by disclosing the inner ground for
their equality.”

– Emmy Noether, Biography

A common goal of variational algorithms is to find the quantum state with the lowest or
highest eigenvalue of a certain observable. A key insight is taken from the variational theo-
rem of quantum mechanics.

8.1 Variational Theorem
By the spectral theorem, a Hamiltonian being Hermitian can be written as,

Ĥ =
N−1∑

k=0
λk |ϕk⟩ ⟨ϕk|

where N is the dimensionality of the space of states, λk is the k-th eigenvalue or, physi-
cally, the k-th energy level, and |ϕk⟩ is the corresponding eigenstate: Ĥ |ϕk⟩ = λk |ϕk⟩, the
expected energy of a system in the (normalized) state |ψ⟩ will be:

⟨ψ|Ĥ|ψ⟩ = ⟨ψ|
(
N−1∑

k=0
λk |ϕk⟩ ⟨ϕk|

)
|ψ⟩

=
N−1∑

k=0
λk ⟨ψ | ϕk⟩ ⟨ϕk | ψ⟩

=
N−1∑

k=0
λk |⟨ψ | ϕk⟩|2

117

118 Variational Theorem

If we take into account that λ0 ≤ λk, ∀k, we have:

⟨ψ|Ĥ|ψ⟩ =
N−1∑

k=0
λk |⟨ψ | ϕk⟩|2

≥
N−1∑

k=0
λ0 |⟨ψ | ϕk⟩|2

= λ0

N−1∑

k=0
|⟨ψ | ϕk⟩|2

= λ0

Since {|ϕk⟩}N−1
k=0 is an orthonormal basis, the probability of measuring |ϕk⟩ is pk = |⟨ψ | ϕk⟩|2,

and the sum of all probabilities is such that
∑N−1
k=0 |⟨ψ | ϕk⟩|2 =

∑N−1
k=0 pk = 1. In short,

the expected energy of any system is higher than the lowest energy or ground state energy:

⟨ψ|Ĥ|ψ⟩ ≥ λ0

The above argument applies to any valid (normalized) quantum state |ψ⟩, so it is perfectly
possible to consider parametrized states |ψ(θ⃗)⟩ that depend on a parameter vector θ⃗. This is
where the "variational" part comes into play. If we consider a cost function given by C(θ⃗) :=
⟨ψ(θ⃗)|Ĥ|ψ(θ⃗)⟩ and want to minimize it, the minimum will always satisfy:

min
θ⃗
C(θ⃗) = min

θ⃗
⟨ψ(θ⃗)|Ĥ|ψ(θ⃗)⟩ ≥ λ0

The minimum value of C(θ⃗) will be the closest that one can get to λ0 using the parametrized
states |ψ(θ⃗)⟩, and equality will only be reached if there exists a parameter vector θ⃗∗ such
that

∣∣∣ψ
(
θ⃗∗
)〉

= |ϕ0⟩.

If the (normalized) state |ψ⟩ of a quantum system depends on a parameter vector θ⃗, then
the optimal approximation of the ground state (i.e. the eigenstate |ϕ0⟩ with the minimum
eigenvalue λ0) is the one that minimizes the expectation value of the Hamiltonian Ĥ :

⟨Ĥ⟩(θ⃗) := ⟨ψ(θ⃗)|Ĥ|ψ(θ⃗)⟩ ≥ λ0

The reason why the variational theorem is stated in terms of energy minima is that it in-
cludes a number of mathematical assumptions: - For physical reasons, a finite lower bound
to the energy E ≥ λ0 > −∞ needs to exist, even for N → ∞. - Upper bounds do not
generally exist.

However, mathematically speaking, there is nothing special about the Hamiltonian Ĥ be-
yond these assumptions, so the theorem can be generalised to other quantum observables and
their eigenstates provided they follow the same constraints. Also, note that if finite upper
bounds exist, the same mathematical arguments could be made for maximising eigenvalues
by swapping lower bounds for upper bounds.If the (normalized) state |ψ⟩ of a quantum

Variational Quantum Algorithms 119

system depends on a parameter vector θ⃗, then the optimal approximation of the ground
state (i.e. the eigenstate |ϕ0⟩ with the minimum eigenvalue λ0) is the one that minimizes
the expectation value of the Hamiltonian Ĥ :

⟨Ĥ⟩(θ⃗) := ⟨ψ(θ⃗)|Ĥ|ψ(θ⃗)⟩ ≥ λ0

The reason why the variational theorem is stated in terms of energy minima is that it in-
cludes a number of mathematical assumptions: - For physical reasons, a finite lower bound
to the energy E ≥ λ0 > −∞ needs to exist, even for N → ∞. - Upper bounds do not
generally exist.

However, mathematically speaking, there is nothing special about the Hamiltonian Ĥ be-
yond these assumptions, so the theorem can be generalised to other quantum observables
and their eigenstates, provided they follow the same constraints. Also, note that if finite
upper bounds exist, the same mathematical arguments could be made for maximising eigen-
values by swapping lower bounds for upper bounds.

Barren Plateau Problem: One major disadvantage of these variational quantum al-
gorithms is the barren plateau problem. As long as there is some non-zero gradient, the
parameters and the cost function keep changing, but what if there is a large gradient zero,
which does not update the parameters or the cost function? There is a vast literature about
this problem in classical machine learning as well as quantum computing1.

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

θ1 θ 2

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

θ1 θ 2

Figure 8.1: Two-dimensional cross-section through the landscape of cost functions.

8.2 Quantum Approximation Optimisation Algorithm
Quantum Approximate Optimisation Algorithm (QAOA) is a variational quantum algo-
rithm designed for combinatorial optimisation problems.2. Combinatorial optimisation is a

1Refer to the paper McClean et al. [2018] or Cerezo et al. [2021a]
2First introduced in the paper Farhi et al. [2014]

120 QAOA for Graph Theoretical Optimisation Problems

field of mathematical optimisation, where one tries to find an optimal object from a finite
set of objects.

The quantum circuit that implements these algorithms has its minima no less than that of
the objective function that we are trying to optimise.

The overall scheme of QAOA can be roughly summarised by the following steps:

• Map classical optimisation as a quantum problem: The optimisation problem
is encoded in the Hamiltonian of a quantum system, using some objective function Cz

• Map the quantum problem to a parametrised quantum circuit: A quantum
circuit is constructed that encodes the potential solution

• Classical sub-routine: The parameters in the circuit are optimised classically to
extremise the expectation value of the Hamiltonian

• Measure: The Final measured state provides solutions to the original optimisation
problem

• Repeat to improve accuracy: This is repeated to improve the quality of the solu-
tion

• Get the solution to the optimisation problem: Final solution is represented in
the computational basis, with the combinatorial solutions having the highest proba-
bilities

• Get good approximation ratio: The goal is to find a solution such that Cz

C ≥ r,
where r is the approximation ratio, that is, the ratio of the solution given by our
algorithm and the actual optimal solution for the problem.

In this chapter, we will see two graph optimisation theoretical problems- max cut and max
independent set. To understand the problems better, let’s first quickly go through some
graph-theoretical definitions.

8.3 QAOA for Graph Theoretical Optimisation Problems
Graph G = (V,E) is a set of vertices V and edges E ⊆ V ×V . A cut (S, V \S) is a partition
of the vertex set into two disjoint subsets. The edges across the two parts of the cut, that
is e = (u, v) ∈ E such that u ∈ S, v ∈ V \ S or vice versa, are called cut edges. A maximum
cut (max cut) of a graph G is a cut that has the maximum number of cut edges. The max
cut problem is that given a graph G = (V,E) we need to find the maximum cut of G.

A subset of vertices U ⊆ V is called an independent set if no two vertices in U have an
edge between them. Such a set U of maximum possible size for the given graph is called
the maximum independent set(max independent set) of the graph. The max independent
set problem is given a graph G, to find the maximum independent set in the graph.

Variational Quantum Algorithms 121

H

H

H

H

Cost Mixer ... Cost Mixer

Calculate
expected
objective

value

Update cost gate angles γ
and mixer gate angles β

exp(−iγ1C)
exp(−iβ1

∑
i Xi)

exp(−iγpC)
exp(−iβp

∑
i Xi)

Figure 8.2: General working of QAOA

Both the Max cut and Max independent set problems are NP-Hard. One way of
coping with this hardness is to devise approximation algorithms which give an approximate
solution to the optimal one. For such approximation algorithms, we define something called
the approximation ratio.

Definition 8.3.1 (Approximation Ratio). The approximation ratio of an algorithm is the
ratio of the value of solution returned by the algorithm to that of the optimum solution for
the problem.

In the subsequent section, we will see the best-known classical algorithms and the QAOA
approach for these problems.

8.4 Max Cut
Problem Statement: Given a graph G = (V,E), label the nodes as S or V \ S such that
the (S, V \ S) is a max cut.

8.4.1 Classical Algorithm for Max Cut Problem
The best-known classical algorithm for this problem is the Goemans-Williamson algorithm.
This is an approximation algorithm 3 that produces a cut randomly, which, on expectation,

3Approximation algorithms are a class of algorithm that gives an approximate optimal solution rather
than the exact solution. To know more, refer to the Wikipedia page on approximation algorithm or the
textbook Williamson and Shmoys [2011]

https://en.wikipedia.org/wiki/Approximation_algorithm

122 Max Cut

is approximately 88% of the optimal max cut.

Given a graph G = (V,E) with n vertices, let us denote these vertices as V = {1, 2 . . . n}.
The max cut M for G, say maxcut(G), can be seen as the solution of the following integer
quadratic programming.

maxcut(G) = max 1
2
∑

{i,j}∈E
(1 − xixj)

subjected to xi ∈ {−1, 1}∀i ∈ V

But solving the above quadratic programming is NP-Hard. So we try to "relax" the con-
straint in the hope of solving it. But how to "relax" the constraints?

Define Sk ≡ {x ∈ Rk+1|||x|| = 1}. Note that S0 = {−1, 1}. With Sk defined, we can relax
the above optimisation constraint from S0 to Sk.

maxcutSDP(G) = max 1
2
∑

{i,j}∈E
(1 − xi · xj)

subjected to xi ∈ Sk∀i ∈ V

As we are now optimising over a bigger set Sk and not S0, maxcut(G) ≤ maxcutSDP(G).
These xis are now vectors in Rn.4 Since ||xi|| = 1∀i ∈ V note that,

1
4
∑

{i,j}∈E
||xi − xj ||2 = 1

4
∑

{i,j}∈E
(xi − xj)(xi − xj)

= 1
4
∑

{i,j}∈E
xi · xi − 2xi · xj + xj · xj

= 1
2
∑

{i,j}∈E
1 − 2xi · xj

Remarks. Thus, solving for maxcutSDP(G) is equivalent to embedding the vertices on the
sphere Sn−1 so that the sum of the edge lengths is maximum.

8.4.2 Max Cut Semidefinite Programming
As we can efficiently solve semidefinite programming, we translate the problem to SDP (re-
fer to Sec. 1.7 if unfamiliar with SDPs).

Given any graph G, we can construct its adjacency matrix A such that Aij is 1 if there
exists an edge between vertices i and j, and 0 otherwise. Also define a matrix X such that
Xij = xi · xj . One can prove that this X is a positive semidefinite matrix as it can be
written as BTB where B is a matrix whose columns are the vectors xi.

4This way of translating vertices of a graph to Rn or any other metric space is called metric embedding
of the graph. Refer to Matoušek [2013] know more.

Variational Quantum Algorithms 123

Theorem 8.4.1. {xi}i∈V is optimal solution for maxcutSDP(G) if an only if X is optimal
solution for the following SDP,

minX ·A
s.tX ⪰ 0 and Xii = 1∀i ∈ V

Proof. X feasible solution to the above SDP ⇐⇒ Xii = 1∀i ∈ V ⇐⇒ ||xi|| = 1∀i ∈ V ,
⇐⇒ {xi}i∈V is optimal solution for maxcutSDP(G). Also as 1

2
∑

{i,j}∈E(1 − xi · xj) =
1
2 |E| − 1

4A · X. This shows minimising X · A corresponds to maximising the objective
function of maxcutSDP(G).

Thus, by solving the above SDP (which can be solved efficiently on a classical computer), we
can find an approximate solution to the max cut problem. How "good" is this approximate
solution?

Theorem 8.4.2. If H is a random hyperplane through origin and Cut(H) is the sixe of the
edge cut containing edges whose vertices are i and j such that xi and xj are separated by
the hyper plane H, then ∃α ∈ R with α ∼ 0.868 such that,

E[Cut(H)] ≥ αmaxcutSDP(G) ≥ maxcut(G)

Proof.

E[Cut(H)] =
∑

{i,j}∈E arccos(xi · xj)
π

Let β be a constant such that arccos(t) ≥ β(1−t)∀t ∈ [−π/2, π/2]. Solving for β and setting
α as 2β/π gives α ∼ 0.868. Thus,

E[Cut(H)] =
∑

{i,j}∈E arccos(xi · xj)
π

≥
∑

{i,j}∈E

β

π
(1 − xi · xj) = α maxcutSDP(G)

8.4.3 Quantum Algorithm for Max Cut Problem
Let’s first map this classical problem to a quantum problem. Let xi ∈ {−1, 1} be the label
on the ith node. The quantity 1 − xixj is 0 if i, j have the same label and 2 if they have
opposite.

H = −1
2

∑

(i,j)∈E(G)

1 − xixj

Note that the negative sign in the expression converts the maximisation problem to a min-
imisation problem. We are formalising the problem in this way, as a minimisation problem,
which can be seen as an energy minimisation problem, where the above H is the Hamilto-
nian (refer to chapter 2 for the definition of Hamiltonian). Thus, from a classical problem,
we have translated it to a quantum problem of finding the lowest energy state or ground

124 Max Cut

state.

We have formulated the problem in a quantum mechanics language, but still this is not in a
form a quantum computer can understand. The next step is to translate this Hamiltonian
to the Hamiltonian of a quantum circuit.

The complete step-by-step process to translate H to a quantum circuit is beyond the scope
of this book. Here, we only give an overarching idea of how this is done. This is done by
translating the cost function to something called a Quadratic Unconstrained Binary Opti-
misation (QUBO), which then gives a cost function Hamiltonian HC for the circuit. This
cost function Hamiltonian has the property that its minimum corresponds to the minimum
of H and thus to the maximum cut value.

Once we have this HC , our task is to prepare the ground state of HC on the quantum
computer. This is done by having a parametrised quantum circuit, whose parameters are
updated as the circuit is run. Sampling from this state, with a high probability, yields the
solution of our optimisation function. Initially, we start with a "guess state" for the ground
state, which, with subsequent iteration and updation of parameters, finally converges close
to the ground state. Most of the time, these parameters are optimised classically.

It turns out that the QUBO Hamiltonian is very similar to the Icing Hamiltonian that physi-
cists are familiar with. This enables us to solve these optimisation problems by borrowing
ideas from the Icing Hamiltonian.

Though for a general graph class, the QAOA algorithm for max cut is not known to exceed
the performance of the classical Goemans-Williamson algorithm, it is still interesting to
study due to the following approximation ratio guarantees, as shown in table 8.1.

Graph Class Depth p Approx. Ratio Ref.
3-regular graphs
(worst-case)

1 ≥ 0.6924 Farhi et al. [2014]

3-regular graphs
(worst-case, with
no cycles ≤ 5)

2 ≥ 0.7559 Wurtz and Love [2021]

3-regular graphs
(worst-case, with
no cycles ≤ 2p+ 1)

3 ≥ 0.7924 (conjectured) Wurtz and Love [2021]

Table 8.1: Summary of some known approximation ratios of QAOA for Max-Cut on various
graph classes and depths p.

Variational Quantum Algorithms 125

8.5 Max Independent Set (MIS)
Problem Statement: Given a graph G = (V,E), find a subset U ⊆ V which is the
maximum independent set.

8.5.1 Classical Algorithm for Max Independent Set Problem
Classically not just MIS is a hard problem, even approximating it is hard! For any constant
ϵ > 0 it is NP-Hard (unless NP = ZPP) to approximate MIS to within n1−ϵ Håstad [1999];
Feige and Kilian [1998] (This means the OPT(MIS)

MIS given by algo is as large as n1−ϵ).

The best known classical approximation ratio is O(n/(logn)2) Boppana and Halldórsson
[1992], a bound that saw no improvement since 1992.

8.5.2 Quantum Algorithm for Max Independent Set Problem
Again, a full-length discussion about the QAOA quantum circuit for the max independent
set problem is out of the scope of this book. Here, we will see how we translate the classical
optimisation to a quantum problem.

Define a variable ni for each node. It is 1 if the node is in the set A, and otherwise.

H =
∑

(i,j)∈E(G)

ninj

It is 0 if A is an independent set. There are multiple possible independent sets, and all get
a value of 0 here.

Now, we add a term to split this degeneracy and separate out the maximum independent
set.

H =
∑

(i,j)∈E(G)

ninj − ∆
∑

k∈V (G)

nk

Here again, minimising H corresponds to the maximum independent set. Similar to the
max cut problem, we can use Quadratic Unconstrained Binary Optimisation (QUBO) and
construct a cost function Hamiltonian HC for setting up the quantum circuit. The best
known approximation ratios are given in table 8.2. Like the classical case, a similar hard-
ness result is known that for a general graph, no polynomial time constant approximation
algorithm is possible even with QAOA Håstad [1999]; Gamarnik [2022].

126 FURTHER READING & REFERENCES

Algorithm Graph Type Approx. Ratio Ref.
QAOA p = 1 General (max degree ∆) 1/(∆+1) (same as

greedy)
Brady et al. [2023]

QAOA p > 1 General (random graphs) Empirical
∼ 0.66–0.90

Brady et al. [2023]

Iterative QAOA
hybrids

General Near-optimal em-
pirically

Brady et al. [2023]

Rydberg Varia-
tional (QAA)

Unit-disk (geometric) High quality; su-
perlinear speedup

Ebadi et al. [2022]

Table 8.2: Summary of some known approximation ratios of QAOA for MIS on various
graph classes and depths p.

Further Reading & References
J. Basso, S. Bravyi, S. Harrow, A. Montanaro, and D. Steurer. The quantum approximate

optimization algorithm at high depth for maxcut on large-girth regular graphs. Quantum,
6:762, 2022. doi: 10.22331/q-2022-07-04-762.

Ravi B. Boppana and Magnús M. Halldórsson. Approximating maximum independent sets
by excluding subgraphs. In STOC, pages 41–50, 1992.

Lucas T. Brady et al. Iterative quantum approximate optimization algorithm for maximum
independent set. Quantum, 7:1179, 2023.

M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles. Cost func-
tion dependent barren plateaus in shallow parametrized quantum circuits. Nature
Communications, 12(1):1791, 2021a. doi: 10.1038/s41467-021-21728-w. URL https:
//doi.org/10.1038/s41467-021-21728-w.

Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al.
Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644, 2021b.

Matt DeVos. Notes on The Goemans-Williamson Algorithm. Simon Fraser University, 2020.

Stefan Dörn. Improved quantum algorithm for maximum independent set. Theoretical
Computer Science, 551:44–52, 2014.

Sepehr Ebadi et al. Quantum optimization of maximum independent set using rydberg
atom arrays. Science, 376(6598):1209–1215, 2022.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimiza-
tion Algorithm. 11 2014.

Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. J. Comput. Syst.
Sci., 57(2):187–199, October 1998. ISSN 0022-0000. doi: 10.1006/jcss.1998.1587. URL
https://doi.org/10.1006/jcss.1998.1587.

https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1006/jcss.1998.1587

Variational Quantum Algorithms 127

David Gamarnik. The overlap gap property and the power of qaoa. In Proceedings of the
International Congress of Mathematicians (ICM), 2022.

Johan Håstad. Clique is hard to approximate within n 1- ε. 1999.

Jan Hladký and Brendan D. McKay. Maximum cuts in regular graphs. Random Structures
& Algorithms, 44(4):479–506, 2014. doi: 10.1002/rsa.20530.

Johan Håstad. Clique is hard to approximate within n1−ϵ. Acta Mathematica, 182(1):
105–142, 1999.

Jirı Matoušek. Lecture notes on metric embeddings. ETH Zürich, 2013.

Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut
Neven. Barren plateaus in quantum neural network training landscapes. Nature Com-
munications, 9(1), November 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-07090-4.
URL http://dx.doi.org/10.1038/s41467-018-07090-4.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

John Preskill. Lecture notes for physics 229: Quantum information and computation. Cal-
ifornia Institute of Technology, 16(1):1–8, 1998.

Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G Rieffel. Quantum approximate
optimization algorithm for maxcut: A fermionic view. Physical Review A, 97(2):022304,
2018.

David P Williamson and David B Shmoys. The design of approximation algorithms. Cam-
bridge university press, 2011.

Jonathan Wurtz and Peter J. Love. Maxcut approximation on regular graphs with the
quantum approximate optimization algorithm. Quantum, 5:620, 2021. doi: 10.22331/
q-2021-12-16-620.

http://dx.doi.org/10.1038/s41467-018-07090-4

128 FURTHER READING & REFERENCES

Part III

Quantum Information

129

Chapter 9

Generalising Operations

“If someone gave me a practical quantum computer tomorrow, then I confess that
I can’t think of anything that I, personally, would want to use it for: only things
that other people could use it for!”

– Scott Aaronson, Quantum Computing since Democritus

The dynamics of a closed quantum system are always assumed to be unitary. In other words,
if initially the state of a quantum system is |ψ⟩, then in a closed system this can evolve to
U|ψ⟩ for some unitary matrix U. It is known that quantum mechanics never creates or
destroys information, but this is only true for closed systems. However, the assumption
that a system is closed strays far from reality.

9.1 Preliminaries
We will discuss methodologies for understanding real-world systems, which can be regarded
as an open system. By incorporating a system environment, we can view it as a closed
system. We shall build the framework to study the evolution of a system, initially non-
correlated with the environment, but that is entangled further on. The tools we have at
our disposal are unitary evolution of the entire system, addition of a system through en-
tanglement, and discarding a subsystem through a partial trace. We shall map the initially
independent density operator of the system to the density operator of the system + environ-
ment as it interacts. The superoperator is introduced to transform from density operators
of the system to density operators of the system + environment at a further time.

One slight caveat that should be mentioned is that if we have successive interactions from
the environment, our framework only allows for independent interactions each time. To be
clear, the initial state of the system must be completely uncorrelated from the environment,
as we shall illustrate further. Only when we have multiple independent interactions, at each
successive iteration, we can apply the superoperator formalism to note the transformation
of the density matrix.

131

132 Preliminaries

We begin with some emphasis on crucial topics that we shall work with for generalising
operator transformations.

9.1.1 Schmidt Decomposition
Schmidt decomposition is essentially the Singular Value Decomposition (SVD) as mentioned
earlier, applied to a quantum state that is shared between two separate systems, only for a
bipartite state. Schmidt decomposition cannot be extended to systems composed of more
than two parts. Its real power lies in how it elegantly reveals the fundamental connections
and the entanglement between the two parts of the system.

The Schmidt decomposition theorem for a pure state |ψ⟩ ∈ H = HA ⊗ HB of a bipartite
quantum system, then there would exist orthonormal states {|lA⟩} for HA, and {|lB⟩} for
HB , such that

|ψ⟩ =
R∑

l=1

√
λl|lA⟩|lB⟩

with λi positive real numbers satisfying
∑R
i=1 λi = 1, where R denotes the number of non-

zero eigenvalues of the reduced density matrices ρA = TrBρ and ρB = TrAρ. The states
|lA⟩, and |lB⟩ depend on the particular state |ψ⟩.

The Schmidt rank of the state |ψ⟩ is the number of non- zero eigenvalues of the reduced
density matrices, which are equal for ρA and ρB . Naively, the Schmidt number can be
evidence for entanglement, but not a measure of entanglement, since a bipartite pure state
is entangled if and only if its Schmidt number is greater than one. For a separable state, we
have the Schmidt number equal to one.

9.1.2 Purification
On a related note, quantum state purification refers to the process of representing a mixed
state as a pure quantum state of a higher-dimensional Hilbert space. The purification al-
lows the original mixed state to be recovered by taking the partial trace over the additional
degrees of freedom. The purification is not unique; there are different purifications that can
lead to the same mixed states.

Given a quantum system described by a density matrix ρA, we can introduce another system
ρB such that the state of the composite system is a pure state and ρA = TrBρ = TrB{|ψ⟩⟨ψ|}.
To see this, consider a generic pure state for the global system given by the expression

|ψ⟩ =
∑

lk

clk|lA⟩|kB⟩

with {|lA⟩} and {|kB⟩} as basis sets for the subsystems. The corresponding density matrix
is thereby,

ρ =
∑

lk

∑

l′k′

clkc
∗
l′k′ |lA⟩|kB⟩⟨l′A|⟨k′

B |

Generalising Operations 133

whose trace can be evaluated as

ρA = TrBρ =
∑

k′′

⟨k′′
B |
(∑

lk

∑

l′k′

clkc
∗
l′k′ |lA⟩|kB⟩⟨l′A|⟨k′

B |
)

|k′′
B⟩

=
∑

k′′

∑

lk

∑

l′k′

clkc
∗
l′k′ |lA⟩⟨k′′

B |kB⟩⟨l′A|⟨k′
B |k′′

B⟩

=
∑

lk

∑

l′k′

clkc
∗
l′k′ |lA⟩⟨l′A| ⟨k′

B |
(∑

k′′

|k′′
B⟩⟨k′′

B |
)

|kB⟩
︸ ︷︷ ︸

=⟨k′
B

|kB⟩=δkk′

=
∑

k

∑

ll′

clkc
∗
l′k|lA⟩⟨l′A|

Thus, the coefficients of the density matrix in the expansion in its subsystem must obey the
relation

(ρA)ll′ =
∑

k

clkc
∗
l′k

which attributes correctly and has solutions, provided the Hilbert space of the adjoint sys-
tem is large enough, with at least the same dimension. The existence of the solution is
related to the size of the adjoint space, which is related to the entropy of the system. By
increasing the size of the adjoint space, we always have a solution for the coefficients.

Purifying a qubit

Consider a qubit with density matrix ρA, and we adjoin another ancillary qubit for
its purification. From the above condition, we have the following set of equations:

(ρA)00 = c00c
∗
00 + c01c

∗
01,

(ρA)01 = c00c
∗
10 + c01c

∗
11 = (ρA)∗

10

(ρA)11 = c10c
∗
10 + c11c

∗
11

which can be solved to give,

c00 =
√

(ρA)00, c01 = 0, c10 = (ρA)∗
01√

(ρA)00
, c11 =

√
(ρA)10(ρA)11 − |(ρA)01|2

(ρA)00

leading us to the purification. For a two-qubit system, it is thus possible to generate
any density matrix ρA for one of the two qubits through unitary operations on that
system.

9.2 Kraus Representation
Before studying the joint unitary evolution of completely decoupled systems, we consider a
simplistic example that we have encountered earlier, being a closed system unitary evolution.

134 Kraus Representation

A closed system |ψ⟩ evolves into |ψ⟩ → |ψ′⟩ = U|ψ⟩ for some unitary matrix U, through
unitary evolution. The density matrix of the system is thus transformed from ρ = |ψ⟩⟨ψ|
to ρ′ = (U|ψ⟩)

(
⟨ψ|U†) = UρU†. Generalizing to mixed states that evolve under unitary

transforms as |φ⟩ 7−→ |φ′⟩ = U|φ⟩. Equivalently, we have the density matrix of the new
state as

ρ′ =
∑

i

pi|φ′
i⟩⟨φ′

i|

=
∑

i

piU|φi⟩⟨φi|U†

= U
(∑

i

pi|φi⟩⟨φi|
)

U† (by linearity)

= UρU†

As we see above, density matrices transform through the relation,

ρ 7−→ ρ′ = ξ(ρ)

The quantum operator formalism generalises the dynamic change to a state that occurs as
the result of some physical process, with ρ being the initial state before the process, and
ξ(ρ) the final state after the process occurs, possibly up to some normalisation factor.

A natural way to describe the dynamics of an open quantum system is to regard it as arising
from an interaction between the system of interest, which we shall call the principal system,
and an environment, which together form a closed quantum system.

ρ

Interaction ρ′ = ξ(ρ)
|e⟩

For multiple interactions, we proceed iteratively, such that each interaction is independent,
since we want the initial state of the system and the environment to be non-correlated.

ρ

Interaction ρ′ = ξ(ρ)
|e⟩

Interaction′ ρ′′ = ξ′(ρ′) = ξ′(ξ(ρ))
|e′⟩

Generalising Operations 135

We can generalise this notion of density operator mapping through the Kraus operator-sum
representation as the map defined by a set of {Ek} operators, with

ξ : ρ → ρ′ =
∑

k

EkρE
†
k

such that the completeness relation is satisfied
∑

E†
kEk = I

which maps density operators to density operators obeying

• Hermiticity preserving:

ρ′† =
(∑

k

EkρE
†
k

)†

=
∑

k

(E†
k)†ρ†E†

k =
∑

k

EkρE
†
k = ρ′

• Unit Trace preserving:

Tr(ρ′) = Tr
{∑

k

EkρE
†
k

}
=
∑

k

Tr{EkρE†
k} = Tr

{
ρ
∑

k

EkE
†
k

}
= Trρ = 1

• Positive semi-definiteness preserving:

⟨ϕ|ρ′|ϕ⟩ =
∑

k

⟨ϕ|EkρE†
k|ϕ⟩ ≡

∑

k

⟨φk|︸︷︷︸
⟨φk|=Ek⟨ϕ|

ρ |φk⟩︸︷︷︸
|φk⟩=E†

k
|ϕ⟩

≥ 0

Thereby, we have effectively mapped the joint evolution of a system and an adjoint environ-
ment as an entire closed system through the Kraus representation. Now, let us try building
up the evolution of a generic state |ψA⟩, by constructing an inner product preserving unitary
operator U acting on a bigger system, through the superoperator as

U |ψA⟩|0B⟩ =
∑

k

Ek|ψA⟩|kB⟩

where {kB} represents an orthonormal basis for the extended system. Here, the unitarity
naturally arises from the completeness relation of the Kraus operators.

For a physical understanding of the process of quantum operation, let us realise the equiva-
lence of unitary operations on the global system. This structure gives rise to a probabilistic
notion of a noisy channel, which we shall explore further later. Naively, we can define the
probability of the kth operator through p(k) = Tr(EkρE†

k), and the kth density matrix can
be normalized to give

ρk = EkρE
†
k

Tr(EkρE†
k)

136 Kraus Representation

such that the quantum operation beautifully maps to a noisy communication channel where
a state ρ is probabilistically replaced by the state ρk, with

ξ(ρ) =
∑

k

EkρE
†
k =

∑

k

Tr(EkρE†
k) EkρE

†
k

Tr(EkρE†
k)

=
∑

k

p(k)ρk

There exists an intricate structure to the notion of superoperators, where we can compose
two Kraus operators ξA and ξB to give rise to

ξ = ξBξA, ξ(ρ) = ξB(ξA(ρ))

which gives rise to a semigroup structure due to the non existence of an invertible structure
unless unitarity is maintained. The non-existence of invertibility gives rise to a physical
notion of describing an evolution from t0 to t1, but not the reverse. This can be seen as a
loss of information from the system to the auxiliary adjoint system: environment, and we
can’t run the evolution backwards. This phenomenon gives rise to decoherence and will be
delved into in detail further.

We also note that the different representations can give rise to the same superoperator. If
two superoperators coincide ξ(ρ) =

∑
k EkρE

†
k and ξ′(ρ) =

∑
k FkρF

†
k , if and only if there

exists an unitary matrix U such that

Fi =
∑

j

UijEj

This can be shown by noting that two states produce the same density operator if there
exists an unitary matrix transforming one state to the other, understood as an effective
change of basis, but representing the same state, as

|ψi⟩ =
∑

j

Uij |φj⟩

This results in an untiary freedom in the operator sum representaion.

Now, we are equipped to tackle the fundamental representation theorem:

Theorem 9.2.1. A map ξ : ρ → ρ′ satisfying the following requirements:

• linearity: ξ(pAρA + pBρB) = pAξ(ρA) + pBξ(ρB),

• preserves hermiticity,

• preserves trace,

• is completely positive,
has an operator-sum representation given by

ρ′ =
∑

k

EkρE
†
k

where Ek satisfy
∑
k E

†
kEk = I,

Generalising Operations 137

For clarification, the completely positive is a stronger property than positive, which primarily
constrains the positive nature of the density matrices. Complete positivity implies, for any
extension of the Hilbert space HA, to HA ⊗ HB , the superoperator ξ ⊗ I must be positive.

Proof. Given a system HA satisfying the above axioms, we shall consider an auxiliary sys-
tem HB of the same dimension. Let |lA⟩ and |lB⟩ be the orthonormal basis to define the
maximally entangled state of HA ⊗ HB as

|ℓ⟩ :=
∑

l

|lA⟩|lB⟩

Given a quantum operation ξ, we further define the operator on the maximally entangled
state given by

ξ̃ := (IA ⊗ ξ)(|ℓ⟩⟨ℓ|) =
∑

ll′

(|lA⟩|⟨l′A|)ξ(|lB⟩⟨l′B |)

The beauty of the argument relies on the notion that the operator ξ̃ provides a complete
description of the quantum operation ξ. To understand the effect of ξ on an arbitrary state
of HB , it is sufficient to know the action on the single maximally entangled state with the
auxiliary system. To recover ξ from ξ̃, we note, for a state |ψB⟩ =

∑
k ck|kB⟩ in HB , we

define a corresponding state |ψA⟩ in HA through

|ψA⟩ =
∑

k

c∗
k|kA⟩

such that the effect of ξ can be recovered from ξ̃ through the partial trace as

⟨ψA|ξ̃|ψA⟩ = ⟨ψA| ((IA ⊗ ξ)(|ℓ⟩⟨ℓ|)) |ψA⟩ = ⟨ψA|
(∑

ll′

(|lA⟩|⟨l′A|)ξ(|lB⟩⟨l′B |)
)

|ψA⟩

=
∑

k

ck⟨kA|
(∑

ll′

(|lA⟩|⟨l′A|)ξ(|lB⟩⟨l′B |)
)∑

k′

c∗
k′ |k′

A⟩

=
∑

ll′

∑

kk′

ckc
∗
k′ ⟨kA|lA⟩︸ ︷︷ ︸

δlk

ξ(|lB⟩⟨l′B |) ⟨l′A|k′
A⟩︸ ︷︷ ︸

δl′k′

=
∑

ll′

clc
∗
l′ξ(|lB⟩⟨l′B |) = ξ

(∑

l

cl|lB⟩
∑

l′

c∗
l′⟩l′B |

)
= ξ(|ψB⟩⟨ψB)

Suppose now there exists some decomposition of ξ̃ as ξ̃ =
∑
i pi|ji⟩⟨ji| and we consequently

define the map
Ei|ψB⟩ := √

pi⟨ψA|ji⟩
This linear map can be decomposed as

∑

i

Ei|ψB⟩⟨ψB |E†
i =

∑

i

pi⟨ψA|ji⟩⟨ji|ψA⟩

= ⟨ψA|
(∑

i

pi|ji⟩⟨ji|
)

|ψA⟩

138 Kraus Representation

= ⟨ψA|ξ̃|ψA⟩ = ξ(|ψB⟩⟨ψB |)
Thereby, we have

ξ(|ψB⟩⟨ψB |) =
∑

i

Ei|ψB⟩⟨ψB |E†
i

for all pure states |ψB⟩ of HB . By convex linearity, it follows that ξ(ρ) =
∑

i

EiρE
†
i .

In other words, the Kraus representation theorem infers that, if the evolution of a density
matrix ρB → ρ′

B = ξ(ρB) preserves hermiticity and trace, is linear and completely positive,
then the evolution can be realised by the unitary transformation, acting on a larger Hilbert
space HA ⊗ HB .

Representing Kraus Operators

Consider a single qubit quantum channel |ψ⟩ = α|0⟩ + β|1⟩ and an environment
|e⟩ =

√
1 − p|0⟩ + √

p|1⟩. The initial state of the system + environment (which
evolves unitarily) is |Ψ0⟩ = |ψ⟩ ⊗ |e⟩,

|Ψ0⟩ =
(
α|0⟩ + β|1⟩

)
⊗
(√

1 − p|0⟩ + √
p|1⟩

)

= α
√

1 − p|0, 0⟩ + α
√
p|0, 1⟩ + β

√
1 − p|1, 0⟩ + β

√
p|1, 1⟩.

Now, consider the interaction is through a CNOT gate with the control on the
environment and the target on the system. We want to map out the evolution of the
system with the environment through the interaction.

ρ
ρ′ = ξ(ρ)

|e⟩

Thus, the post-interaction joint state is

|Ψ⟩ = α
√

1 − p|0, 0⟩ + α
√
p|1, 1⟩ + β

√
1 − p|1, 0⟩ + β

√
p|0, 1⟩

=
√

1 − p(α|0⟩ + β|1⟩) ⊗ |0⟩ + √
p(α|1⟩ + β|0⟩) ⊗ |1⟩

=
√

1 − p|ψ⟩ ⊗ |0⟩ + √
pX|ψ⟩ ⊗ |1⟩.

Tracing out the environment yields the reduced system state

ρ′ = Tre
(
|Ψ⟩⟨Ψ|

)

= (1 − p)|ψ⟩⟨ψ| + pX|ψ⟩⟨ψ|X
= (1 − p)ρ+ pXρX.

This is the familiar probabilistic bit-flip channel. In the Kraus (operator-sum) form,
we may choose E0 =

√
1 − pI and E1 = √

pX, so that ρ′ = E0ρE
†
0 +E1ρE

†
1. We can

check that E†
0E0 + E†

1E1 = (1 − p)I + pI = I.

Generalising Operations 139

The Kraus operator-sum representation ρ 7→ ξ(ρ) =
∑
k EkρE

†
k is derived under the assump-

tion that the initial joint state factorises and is independent. If the system and environment
are initially correlated, a reduced dynamical map that depends only on the system’s density
matrix need not exist. Thereby, the limitation of the formalism of a quantum operation is
that systems that interact with degrees of freedom are used to prepare the system, even
after the preparation is complete.

The Kraus description of reduced dynamics assumes an initial product state between system
and environment, for a well-defined, completely positive map. When initial correlations are
present, the reduced evolution can depend on which joint state was prepared. Consequently,
the reduced map is not representable as a completely positive trace-preserving map acting
only on the system’s initial density operator.

Failure of Kraus representation

Consider a two-qubit system: the principal system S and an environment E. Let the
global unitary be the SWAP operator (which interchanges the two qubits), through
a combined unitary.

ρ

SWAP ρ′ = ξ(ρ)
|e⟩

Now define two different correlated initial joint states |Ψ0⟩(1) and |Ψ0⟩(2) that have
the same system marginal but different environment marginals.

|Ψ0⟩(1) = 1
2
(
|00⟩⟨00| + |11⟩⟨11|

)
, |Ψ0⟩(2) = 1

2
(
|00⟩⟨00| + |10⟩⟨10|

)
.

Compute the system marginals (trace out E),

TrE
(
|Ψ0⟩(1)

)
= 1

2
(
|0⟩⟨0| + |1⟩⟨1|

)
= I

2 , TrE
(
|Ψ0⟩(2)

)
= 1

2
(
|0⟩⟨0| + |1⟩⟨1|

)
= I

2 .

Thus, both joint states give the same system marginal state for the system, ρ = I
2 .

Next compute the environment marginals (trace out S),

TrS
(
|Ψ0⟩(1)

)
= 1

2
(
|0⟩⟨0| + |1⟩⟨1|

)
= I

2 , TrS
(
|Ψ0⟩(2)

)
= |0⟩⟨0|.

Apply the same global unitary USWAP to both joint states and then trace out the
environment to obtain the final system state. Because SWAP interchanges S and E,
the reduced final state of S equals the original marginal of E,

ρ′(i) = TrE
(
USWAP|Ψ0⟩(i)U

†
SWAP

)
= TrS

(
|Ψ0⟩(i)

)

140 Generalised Measurements

Hence, we have,
ρ′(1) = I

2 , ρ′(2) = |0⟩⟨0|

But the two initial joint states had the identical system marginal ρ = I
2 and were

subjected to the same global unitary. If a map ξ acting only on ρ (i.e. ρ′ = ξ(ρ))
existed and were independent of initial correlations, it must produce a unique output
for the input I

2 . The fact that the same input I
2 leads to two different outputs I

2
and |0⟩⟨0| is a contradiction. Therefore, no dynamical map ξ depending only on
ρ exists that reproduces the reduced dynamics for both correlated initial states. In
particular, there is no Kraus representation ρ′ =

∑
k EkρE

†
k valid for these correlated

preparations.

9.3 Generalised Measurements
A generalised measurement is described by a set {Mi} of measurement operators, not nec-
essarily self-adjoint, that satisfy the completeness relation

∑

i

M†
iMi = I

with the post-measurement state with outcome i is the

|ψ′
i⟩ = Mi|ψ⟩√

⟨ψ|M†
iMi|ψ⟩

with probability of measurement

pi = ⟨ψ|M†
iMi|ψ⟩

We realise that the completeness relation results in unit probabilities. Further, the pro-
jective measurements described earlier are a special case of generalised measurements in
which the operators Mi are orthogonal projectors with M†

i = Mi and Mimj = δijMi with
completeness

∑
iMi = I. Projective measurements together with unitary operations are

equivalent to generalised measurements, in a bigger Hilbert space.

Positive Operator-Valued Measure (POVM)

Alice and Bob decide to play a quantum game. Alice has multiple copies of two
qubits, each one either in the |0⟩ state or the |+⟩ state. She sends Bob one of these
qubits and challenges him to find out which qubit was sent. What strategy do you
think Bob can use to find out the qubit was sent correctly every single time? In the
first place, is it possible for Bob to win this game every single time?

Generalising Operations 141

Suppose Bob decides to measure the qubit in the computational basis. Note that
if the outcome is |1⟩, then he can certainly say that |0⟩ was not sent. But what if
the outcome was |0⟩? In this case, Bob will not be able to say for certain whether
the qubit was |0⟩ or |+⟩. The same holds if he chooses to do the measurement in
Pauli X eigenbasis (i.e. {|+⟩,|−⟩} basis). Regardless of what set of orthogonal
projective measurements Bob chooses, he will not be able to distinguish |0⟩ and
|+⟩. Thus, non-orthogonal states can not be perfectly distinguished. So what
can he best do? Is there a way to go beyond these orthonormal projective mea-
surements? This brings us to the concept to POVM a broader class of measurements.

As mentioned in the last section of this chapter, generalized measurements need not
require the condition Π2 = Π, which is satisfied by the projective measurements.
All we need is for the set of measurement operators to give well-defined probabilities.

Consider a set of positive operators M = {E1, E2 . . . Ed} such that 0 ≤ Ei ≤ I for
all i ∈ {1, 2 . . . , d} and

∑
iEi = I. (Notice that the inequality is between matrices.

Ei ≤ I =⇒ I − Ei ≤ 0, that is we require I − Ei to be a positive operator. The
summation condition ensures that M gives a valid probability distribution. Such a
set of measurements is called Positive Operator-Valued Measure (POVM).

Now with the power of POVM, if not distinguish every time, Bob can at least come up
with a zero error discrimination strategy. Consider the following set of measurements:

M = E1, E2, E3

where E1 =
√

2
1+

√
2 |1⟩⟨1|, E2 =

√
2

1+
√

2 |−⟩⟨−| and E3 = I − (E1 + E2), coefficients
chosen such that the condition 0 ≤ Ei ≤ I for all i ∈ {1, 2 . . . , d}.

Using this when Bob does the measurement, if the outcome is that of E1, he can
certainly say Alice sent |+⟩ state, and if it was E2 again with certainty, he can say
she sent |0⟩ state. But if the outcome is that of E3, then he will not be able to
say which state it was. Thus, whenever he is able to find out the state, he can do it
with complete certainty. Such strategies are called zero error discrimination strategy,
which is one of many advantages opened up by POVM measurements.

142 FURTHER READING & REFERENCES

Further Reading & References
Emmanuel Desurvire. Classical and quantum information theory: an introduction for the

telecom scientist. Cambridge university press, 2009.

Prabha Mandayam. PH 5840: Quantum Computation and Quantum Information. Indian
Institute of Technology (IIT) Madras, 2017.

Dan C Marinescu. Classical and quantum information. Academic Press, 2011.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

John Preskill. Lecture notes for physics 229: Quantum information and computation. Cal-
ifornia Institute of Technology, 16(1):1–8, 1998.

Chapter 10

Quantum Entropy

“The theory ‘All crows are black’ is refuted by the single observation of a white
crow, while the theory ‘Some crows are black’ is not refuted by the observation of
a thousand white crows.”

– F. Bavaud, Information theory (paraphrasing Popper)

10.1 Shannon Entropy
Suppose a random variableX can take values x1, x2 . . . xn with some probabilities p1, p2 . . . pn
respectively. How can one quantify how much information is gained by knowing the value
of X?

Intuitively, we would want the information function, say I(X), to depend on pi’s and not
the labels xi’s, as the event of 50% head and 50% tail occurrence should contain the same
information as the event of 50% one and 50% zero. Also, the information content should not
have drastic jumps or falls with slight tweaks in the probabilities. And it is also reasonable
to expect that the information gained when two independent events occur with individual
probabilities p and q is the sum of the information gained from each event alone.

One can show that the function I(p) = k log p for some constant k satisfies all the above-
stated intuitive conditions. More formally I(p) follows:

• I is a function of p1, p2 . . . pn and not x1, x2 . . . xn,

• I(p) is a smooth function,

• I(pq) = I(p) + I(q).

Given the above intuition, let us see the definition of Shannon entropy. Also note that when
we say logN we always mean logarithm to the base 2. This is adopted as in the most basic
form, information in the current day digital computers is represented as 1 or 0, in other
words as bits.

143

144 Shannon Entropy

Definition 10.1.1. (Shannon entropy) Given a probability distribution p1, p2 . . . pn, the
Shannon entropy associated with this probability distribution is

H(X) ≡ H(p1, p2, . . . , pn) ≡ −
∑

i

pi log pi

Events that never occur, pi = 0, are not considered in the calculation of entropy as intu-
itively they do not add to the information content of E (More rigorously, one can also argue
that lim

pi→0
pi log pi = 0). On average, Shannon entropy quantifies the information gain when

we learn the value of a contextual bit in a message.

Shanon Binary entropy

Consider a two-state system for n = 2 and define p1 = p where 0 ≤ p ≤ 1, hence
p2 = 1 − p, thereby, the Shanon binary entropy is a function of p alone as

H(p1 = p, p2 = 1 − p) = −p log p− (1 − p) log(1 − p)

which can be visualized graphically, in a simple plot

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

p

H(p)

Note that the entropy equals zero at p = 0 or p = 1, and attains the maximal
value when p = 1

2 . This is consistently well defined as a notion of entropy since it
processes the average information content of each letter in a message. Information
is a measure of a priori ignorance. If we already know that we shall receive a with
certainty (p = 1), then no information is gained from its reception, and similarly for
receiving b when p = 0. For the equiprobable case, ignorance is maximum; hence,
the maximum possible information is available.

The above example can be elaborated to a general case to understand that H(p1, p2, . . . , pn)
is maximum when p1 = p2 = · · · = pn = 1

n .

Defining a quantity called relative entropy is equally useful, which can measure how close
two probability distributions are.

Quantum Entropy 145

Definition 10.1.2. (Relative entropy) Given two probability distributions p and q, the rel-
ative intensity is defined as

H(p||q) ≡
∑

i

pi log pi
qi

≡ −H(X) −
∑

i

pi log qi

Conventionally, lim
qi→0

−pi log qi → ∞. The motivation for defining relative entropy as above
comes from the following theorem.

Theorem 10.1.1. The relative entropy is non-negative and is zero if and only if the two
probability distributions are equal.

Proof. Using the identity that log x = ln x
ln 2 ≤ x− 1 we can write

H(p∥q) = −
∑

i

pi log qi
pi

≥ 1
ln 2

∑

i

pi

(
1 − qi

pi

)

= 1
ln 2

∑

i

(pi − qi) = 1
ln 2(1 − 1) = 0

We can see that equality is held when pi = qi for all xi’s.

Corollary 10.1.1.1. If X has d outcomes, then H(X) ≤ log d with equality if and only if
X is a uniform distribution.

10.2 Classical Data Compression
Can information be efficiently stored by compressing the bit string when given in a series of
bit strings? If possible, to what fraction can we compress? As a first insight into classical
data compression, we employ a lossless data compression technique that assigns variable-
length codes to characters based on their frequency of occurrence in the data.

Huffman Data Encoding

Huffman coding uses a greedy algorithm to build a prefix tree that optimises the en-
coding scheme so that the most frequently used symbols have the shortest encoding.
Consider a message written in the alphabet such that the frequency of occurrence of
different letters is different, due to a probability distribution. To send a code word,
we need

∑
i pili bits where li is the length, in bits, of the coded letter. Note that the

good strategy, here as in any other useful compression code, is to encode the most
probable strings in the shortest sequences and the less probable strings in the longest
sequences.

146 Classical Data Compression

To address these questions mathematically rigorously, let us consider an information source
that produces independent and identically distributed bits X1, X2 . . . each of which is zero
with probability p and one otherwise. Though sources often do not behave in the real world
in this fashion, this is a good approximation and works well in most cases.

For a more concrete understanding, consider Xi as the ith coin toss with a head occurring
with p = 0.4. We know that in the large n limit, we will likely find 0.4 fraction of the tosses
to be heads and the remaining tails. We call such sequences typical sequences. Formally
defined as follows.

Definition 10.2.1. (Typical sequence) Given X1 . . . Xn with each Xi equal to 0 with prob-
ability p and 1 with probability 1 − p. In the large n limit, we expect with high probability
a fraction p of the Xi’s to be zero and the remaining ones. A sequence x1 . . . xn for which
this is true is called a typical sequence. Those that do not follow this are called atypical
sequences.

Using the fact that the information source produces independent Xi that will highly likely
be typical sequences with large n, we get

p(x1, . . . , xn) = p(x1)p(x2) . . . p(xn) ≈ pnp(1 − p)(1−p)n

How many bits do we need to represent this sequence? Taking logarithms on both sides, we
find that

− log p(x1, . . . xn) ≈ −np log p− n(1 − p) log(1 − p) ≡ nH(X)

Thus, p(x1, . . . , xn) ≈ 2−nH(X) from which we can say that there are at most 2nH(X) typical
sequences (as total probability of all typical sequences ≤ 1). Therefore, we can use only
nH(X) ≤ n bits to identify these typical sequences uniquely. In this sense, we can say that
the information content is not n bits but nH(X), and per bit it is H(X).

Definition 10.2.2. (Entropy rate) Given a random variable X distributed according to the
source distribution, H(X) = −p log p− (1 − p) log(1 − p) is called the entropy of the source
distribution or the entropy rate of the source.

In other words, for such an independent and identically distributed information source, in
the large n limit, the data from n bits can be compressed to nH(X) bits. One could make
this idea more general by defining ϵ-typical strings.

Definition 10.2.3. Given a ϵ > 0 we say a string is ϵ-typical if

2−n(H(X)+ϵ) ≤ p(x1, . . . xn) ≤ 2−n(H(X)−ϵ)

|T (n, ϵ)| denotes the set of all ϵ-typical sequences.

Definition 10.2.4. (Compression and decompression scheme) A compression scheme, Cn(x),
of rate R maps the possible sequences of x = x1, . . . , xn to ⌊nR⌋ length bit strings. The cor-
responding decompression scheme, Dn(x), takes the nR length string to n length string. A
compression-decompression scheme is called reliable if the probability of Dn(Cn(x)) = x
approaches one as n tends to ∞.

Quantum Entropy 147

The following theorem shows that H(X) is necessary and sufficient to store the output from
the source reliably. Before that, we will see a useful lemma whose proof relies on the law of
large numbers.

Lemma 10.2.1. For a fixed ϵ > 0 and any δ > 0 with sufficiently large n, the probability
that the sequence is ϵ-typical is at least 1 − δ. When we fix both ϵ > 0 and δ > 0 then

(1 − δ)2n(H(X)−ϵ) ≤ |T (n, ϵ)| ≤ 2n(H(X)+ϵ)

If S(n) is a collection at most 2nR strings of length n, where R < H(X) and n large, then
for any δ > 0 ∑

x∈S(n)

p(x) ≤ δ

The probability of finding a string from this set goes to zero with large n.

Theorem 10.2.2. (Shannon’s noiseless channel coding theorem) Suppose X = x1, . . . , xn
is an independent and identically distributed information source, and H(X) is the entropy
rate, then a reliable compression-decompression scheme exists if and only if R > H(X).

Proof. As noted, a typical sequence is an n-letter message, X = x1, . . . , xn, where xi ∈ A,
and we have an independent distribution of letters with specific probabilities, such that we
have npi times the ith letter on average. The number of such strings can be enumerated as

n!
∏k

−=1(npi)!

, which represents the number of distinct strings, having the requisite number of parameters.
We can show that this number must approximate

n!
∏k

−=1(npi)!
≈ 2nH(p1,...,pk)

explicitly shown using the Stirling’s formula. Thus, the probability of obtaining such a
typical sequence is the inverse.

Thereby, we obtain,

− 1
n

log p(x1, . . . , xk) = − 1
n

n∑

i=1
log(p(xi)) ≈ H(p1, . . . , pk)

where the last (approximate) equality is guaranteed by the law of large numbers. The fre-
quency nj

n of the letter j in the message is substituted by the a priori probability pj , such
that we obtain the number of times j appears in the message.

The law of large numbers also leads us to, for ϵ > 0, we say a sequence is ϵ-typical, when
∣∣∣∣−

1
n

log p(x1, . . . , xn) −H(p1, . . . , pk)
∣∣∣∣ < ϵ

148 Von Neumann Entropy

as defined earlier. Then, for any δ > 0, the probability that a given sequence is ϵ-typical is
larger than 1 − δ, for sufficiently large n. Therefore, most of the sequences are ϵ-typical in
the limit of large n.

Since there are 2nH(X) typical sequences, asymptotically in n, each occurring with a proba-
bility 2−nH(X), we can identify which one of these sequences actually occurred using nH(X)
bits. Thus, asymptotic compression to H(X) bits per letter is optimal.

10.3 Von Neumann Entropy
Like how Shannon’s entropy measures the information content of classical probability dis-
tributions, Von Neumann entropy is defined for quantum states.

Definition 10.3.1. (Von Neumann entropy) Given a quantum state’s density matrix ρ, its
Von Neumann entropy is defined as

S(ρ) := −Tr{ρ log ρ}

The above definition is motivated by the fact that it resembles the classical Shannon’s
entropy when expressed in terms of the eigenvalues of ρ, say λi’s, as

S(ρ) = −Tr{ρ log ρ} = −
∑

i

λi log λi

To compare the entropy of two density matrices, similar to the notion of classical relative
intensity, quantum relative entropy is defined.

Definition 10.3.2. (Quantum relative density) Given two density matrices ρ and σ the
quantum relative density is defined as

S(ρ||σ) := Tr{ρ log ρ} − Tr{ρ log σ}

Asymmetry in the relative entropy measure

The above defined relative entropy measures, both classical H(p||q) and quantum
S(ρ||σ), is asymmetric in p and q (ρ and σ). In some cases, the logarithm diverges.
Thus, given two probability distributions (or density matrices), we choose one to
be p (ρ) and the other to be q (σ) in such a way that the logarithm term makes
sense. The asymmetry in relative entropy arises because it measures the difference
in information between two probability distributions, not just the distance between
them. In essence, this asymmetry is not a deficiency but a feature, arising from the
inherent asymmetry in the mathematical models from which both concepts emerge.

Definition 10.3.3. (Kernel and Support of density matrix) The vector space spanned by
the eigenvectors of the density matrix ρ with eigenvalue zero is called the kernel, and that
spanned by the non-zero eigenvectors is called the support.

If the kernel of σ intersects the support of ρ non-trivially, then relative entropy is +∞.

Quantum Entropy 149

Theorem 10.3.1. The quantum relative entropy is non-negative and is zero if and only if
the two density matrices are equal.

Proof. Let the spectral decomposition of the density matrix ρ be ρ =
∑
i λi|ui⟩⟨ui|, where

|ui⟩ are the orthonormal eigenvectors and λi are the corresponding non-negative eigenvalues
summing to one (

∑
i λi = 1).

We can write the relative entropy as:

S(ρ||σ) = Tr{ρ(log ρ− log σ)}

Let’s evaluate the two terms separately in the eigenbasis of ρ:

Tr{ρ log ρ} = Tr





(∑

i

λi|ui⟩⟨ui|
)
∑

j

(log λj)|uj⟩⟨uj |





 =

∑

i

λi log λi

Tr{ρ log σ} = Tr
{(∑

i

λi|ui⟩⟨ui|
)

log σ
}

=
∑

i

λi⟨ui|(log σ)|ui⟩

Now, let the spectral decomposition of σ be σ =
∑
j µj |vj⟩⟨vj |. Then log σ =

∑
j(logµj)|vj⟩⟨vj |.

Substituting this into the expression for Tr{ρ log σ}:

⟨ui|(log σ)|ui⟩ =
∑

j

⟨ui|(logµj)|vj⟩⟨vj ||ui⟩ =
∑

j

(logµj)|⟨ui|vj⟩|2

Let’s define Pij = |⟨ui|vj⟩|2. Note that for any fixed i,
∑
j Pij =

∑
j⟨ui|vj⟩⟨vj |ui⟩ =

⟨ui|(
∑
j |vj⟩⟨vj |)|ui⟩ = ⟨ui|I|ui⟩ = 1.

The relative entropy is then:

S(ρ||σ) =
∑

i

λi log λi −
∑

i

λi


∑

j

Pij logµj




The function log(x) is strictly concave. By Jensen’s inequality, for each i:

∑

j

Pij logµj ≤ log


∑

j

Pijµj




Let’s define a probability distribution qi =
∑
j Pijµj = ⟨ui|σ|ui⟩. The set {qi} forms a

probability distribution since
∑
i qi =

∑
i⟨ui|σ|ui⟩ = Tr(σ) = 1.

Substituting this back into the expression for relative entropy, we get a lower bound:

S(ρ||σ) ≥
∑

i

λi log λi −
∑

i

λi log qi =
∑

i

λi log
(
λi
qi

)

150 Von Neumann Entropy

This final expression is exactly the classical relative entropy (or Kullback-Leibler divergence)
H(λ||q) between the probability distribution of eigenvalues of ρ, {λi}, and the distribution
of the diagonal elements of σ in the eigenbasis of ρ, {qi}. As established in the chapter, the
classical relative entropy is non-negative, H(λ||q) ≥ 0.

For the equality S(ρ||σ) = 0 to hold, two conditions must be met

1. The inequality H(λ||q) ≥ 0 must be an equality. This happens if and only if λi = qi
for all i. So, λi = ⟨ui|σ|ui⟩.

2. The Jensen’s inequality for the concave log function must be an equality for every i.
This occurs if and only if for each i, all the values of µj for which Pij = |⟨ui|vj⟩|2 > 0
are identical.

The second condition implies that for any given eigenvector |ui⟩ of ρ, all eigenvectors |vj⟩ of
σ that it has a non-zero projection on must share the same eigenvalue. This is only possible
if each |ui⟩ is also an eigenvector of σ. Since {|ui⟩} forms a basis, this means that ρ and σ
must commute and are thus simultaneously diagonalizable.

If they share the same set of eigenvectors, let this basis be {|k⟩}. Then ρ =
∑
k λk|k⟩⟨k|

and σ =
∑
k µk|k⟩⟨k|. In this case, the quantum relative entropy simplifies to the classical

relative entropy of their eigenvalues

S(ρ||σ) =
∑

k

λk log
(
λk
µk

)

This is zero if and only if λk = µk for all k. Since they have the same eigenvalues and the
same corresponding eigenvectors, the density matrices must be identical, ρ = σ.

Theorem 10.3.2. The following are some properties of S(ρ):

1. S(ρ) is non-negative. It is zero if and only if ρ is pure state.

2. In a d-dimentional Hilbert space the entropy is at most log d. It is equal to log d if and
only if the state is a completely mixed state.

3. Suppose a composite system H = HA ⊗ HB is in pure state then S(A) = S(B).

4. Suppose pi are probabilities of the state being in ρi then

S
(∑

i

piρi

)
= H(pi) +

∑

i

piS(ρi)

Proof. 1. The von Neumann entropy is defined in terms of the eigenvalues {λi} of the
density matrix ρ as S(ρ) = −∑i λi log λi. For a density matrix, the eigenvalues sat-
isfy 0 ≤ λi ≤ 1. For any λi in this range, log λi ≤ 0. Thus, each term −λi log λi is
non-negative. The sum of non-negative terms is also non-negative, so S(ρ) ≥ 0.

Quantum Entropy 151

The equality S(ρ) = 0 holds if and only if every term in the sum is zero. A term
−λi log λi is zero if λi = 0 or λi = 1. Since the eigenvalues must sum to one (

∑
i λi =

1), it must be that exactly one eigenvalue is 1 and all others are 0. A density matrix
with this eigenvalue distribution describes a pure state, ρ = |ψ⟩⟨ψ|. Conversely, if ρ
is a pure state, its eigenvalues are {1, 0, . . . , 0}, and its entropy is S(ρ) = −1 log 1 −∑

0 log 0 = 0.

2. We want to maximize S(ρ) = −∑d
i=1 λi log λi in a d-dimensional space. We can use

the non-negativity of the relative entropy. Let ρ be any state and let σ = 1
dI be the

completely mixed state. From Klein’s inequality, S(ρ||σ) ≥ 0.

Tr{ρ log ρ} − Tr{ρ log σ} ≥ 0

−S(ρ) − Tr
{
ρ log

(
1
d
I

)}
≥ 0

−S(ρ) − Tr{ρ(log(1/d))I} ≥ 0

−S(ρ) − (log(1/d))Tr{ρ} ≥ 0

Since Tr{ρ} = 1 and log(1/d) = − log d:

−S(ρ) + log d ≥ 0 =⇒ S(ρ) ≤ log d

The equality holds if and only if S(ρ||σ) = 0, which implies ρ = σ. Therefore, the
entropy is maximal and equal to log d if and only if the state is the completely mixed
state, ρ = 1

dI.

3. This property is a direct consequence of the Schmidt decomposition. Any pure state
|Ψ⟩ of a composite system HA ⊗ HB can be written as:

|Ψ⟩ =
∑

i

√
λi|ui⟩A ⊗ |vi⟩B

where {|ui⟩A} and {|vi⟩B} are orthonormal sets in HA and HB respectively, and λi > 0
with

∑
i λi = 1.

The reduced density matrix for subsystem A is ρA = TrB(|Ψ⟩⟨Ψ|).

ρA = TrB


∑

i,j

√
λiλj |ui⟩A⟨uj |A ⊗ |vi⟩B⟨vj |B




ρA =
∑

i,j

√
λiλj |ui⟩A⟨uj |ATr(|vi⟩B⟨vj |B)

Since Tr(|vi⟩⟨vj |) = ⟨vj |vi⟩ = δij , we get:

ρA =
∑

i

λi|ui⟩A⟨ui|A

152 Von Neumann Entropy

The non-zero eigenvalues of ρA are precisely the coefficients {λi}. The entropy is
S(A) = −∑i λi log λi.

Similarly, the reduced density matrix for subsystem B is ρB = TrA(|Ψ⟩⟨Ψ|).

ρB =
∑

i

λi|vi⟩B⟨vi|B

The non-zero eigenvalues of ρB are also {λi}. The entropy is S(B) = −∑i λi log λi.
Thus, S(A) = S(B).

4. The equality S(
∑
i piρi) = H(pi) +

∑
i piS(ρi) holds under the specific condition that

the density matrices ρi have orthogonal support. This means that the vector spaces
on which each ρi acts non-trivially are mutually orthogonal.
Let this condition hold. We can choose a basis for the total Hilbert space that respects
this block structure. In this basis, the total density matrix ρ =

∑
i piρi is block-

diagonal:

ρ =



p1ρ1 0 · · ·

0 p2ρ2 · · ·
...

... . . .




The set of eigenvalues of ρ is the union of the sets of eigenvalues of each block piρi. If
{λij}j are the eigenvalues of ρi, then {piλij}j are the eigenvalues of the i-th block.
The von Neumann entropy of ρ is the sum over all its eigenvalues:

S(ρ) = −
∑

i,j

(piλij) log(piλij)

Using the property of logarithms, log(ab) = log a+ log b:

S(ρ) = −
∑

i,j

piλij(log pi + log λij)

S(ρ) = −
∑

i,j

piλij log pi −
∑

i,j

piλij log λij

We can split this into two parts. For the first part:

−
∑

i,j

piλij log pi = −
∑

i

(pi log pi)


∑

j

λij




Since
∑
j λij = Tr(ρi) = 1, this simplifies to:

−
∑

i

pi log pi = H(pi)

Quantum Entropy 153

For the second part:

−
∑

i,j

piλij log λij =
∑

i

pi


−

∑

j

λij log λij




The term in the parenthesis is the entropy of ρi, S(ρi). So this part becomes:
∑

i

piS(ρi)

Combining the two parts gives the desired result:

S
(∑

i

piρi

)
= H(pi) +

∑

i

piS(ρi)

10.4 Quantum Data Compression
As a natural extension to Shnanon’s noiseless coding theorem, we have the quantum ana-
logue presented below. For a message transmission of n letters, each letter being chosen at
random from the alphabet A, which here is an ensemble of pure states, defined by

A = {|ψ1⟩, |ψ2⟩, . . . |ψk⟩}

The state |ψi⟩ is extracted a priori with probability pi, such that
k∑
i=1

pi = 1. Thereby, for
each letter in the message, we have the density matrix

ρ =
k∑

i=1
pi|ψi⟩⟨ψi|

thereby, for the entire message, we have the tensor product,

ρ(n) = ρ⊗n

Here we have assumed that all the letters in the message are statistically independent and
described by the same density matrix ρ.

Schumacher’s theorem, similar to Shannon’s coding theorem, entails us the machinery to en-
code the message, in the sense that we can compress the data, with the optimal compression
rate directed by the von Neumann entropy.

Theorem 10.4.1. (Schumacher’s’s quantum noiseless coding theorem) Suppose we have
a message whose letters are drawn independently from the ensemble A = {|ψ1⟩, . . . , |ψk⟩}
with prior probabilities {p1,pk}, there exists an optimal and reliable code compressing
the message to S(ρ) qubits per letter where ρ =

∑k
i=1 pi|ψi⟩⟨ψi|, asymptotically in the length

of the message.

154 Quantum Data Compression

Proof. The proof of this theorem closely resembles the techniques used in the proof of Shan-
non’s noiseless coding theorem described earlier1. We illustrate the idea here, by spectrally
decomposing the density operator ρ as

ρ =
k∑

i=1
λi|ai⟩⟨ai|,

Further, we have the von Neuman entorpy relating the classical optimal compression rate,
as

H(λ1, . . . , λk) = −
∑

i

λi log λi = −Trρ log ρ = S(ρ)

The ensemble Ã defined from the spectral decomposition states {|a1⟩, . . . , |ak⟩} constitutes
an alphabet of orthogonal pure quantum states.

We rework the definition of a ϵ-typical sequence, for a state |x1⟩ ⊗ · · · ⊗ |xn⟩, with |xi⟩ ∈ Ã
is ϵ-typical, when ∣∣∣∣−

1
n

log[λ(x1) · · ·λ(xn)] − S(ρ)
∣∣∣∣ < ϵ

where λ(xi) = λj if |xi⟩ is in the letter |aj⟩. We define the ϵ-typical subspace as the subspace
spanned by the ϵ-typical states.

As before, the dimension of the subspace can be shown to be of the order of 2nS(ρ). For any
projector Πtypical on this typical subspace, we have

Tr{Πtypicalρ
n} > 1 − δ

provided asymptotically large n, as we proved for the compression scheme in the classical
case. Therefore, as n → ∞, the density matrix ρ(n) has its support on a typical subspace of
dimension 2nS(ρ). A typical n state message can then be encoded using nS(ρ) qubits, thus
constraining the optimal rate by the von Neumann entropy.

Compression of an n qubit message

Consider the binary alphabet A = {|ψ0⟩, |ψ1⟩}, where |ψ0⟩ = cos θ|0⟩ + sin θ|1⟩, and
|ψ1⟩ = sin θ|0⟩ + cos θ|1⟩, which are not necessarily orthogonal.

Say we want to transfer the n qubit message,

|ΨK⟩ = |ψk1⟩ ⊗ |ψk2⟩ ⊗ · · · ⊗ |ψkn⟩

where K = {k1, . . . , kn} singles out the message, which each ki being either 0 or 1.

The states |ψ0⟩ and |ψ1⟩ are drawn from the alphabet A with probabilities p and
1 −p respectively. Any n letter message |ΨK⟩ is in the combined Hilbert space H⊗n,
for the Hilbert space H of a single qubit.

1Interested readers can refer to Schumacher [1995].

Quantum Entropy 155

We decompose the message into the typical subspace through a projector as used in
the proof, such that we can express

|ΨK⟩ = αK |τK⟩ + βK |τ⊥
K⟩

where we say |τK⟩ to belong to the typical subspace Htypical, and |τ⊥
K⟩ belongs to

the orthogonal complement space.

For a measurement to determine whether |ΨK⟩ belongs to the typical subspace, such
that the message is encoded, we realise that we need only nS(ρ) wubits for encoding,
since the typical subspace has dimension ≈ 2nS(ρ). If instead |ΨK⟩ belongs to the
atypical subspace (given by the orthogonal complement), we substitute it with some
reference state |R⟩ residing in the typical subspace.

On decoding the nS(ρ) qubits, we have the effective density matrix, given by

ρ̃K = |αK |2|τK⟩⟨τK | + |βK |2|R⟩⟨R|

As evidently seen, there is some notion of loss of information through the reference
state. We can compute the effective reliability of compression through a physical
quantity, termed the fidelity F , given by

F = ⟨ΨK |ρ̃K |ΨK⟩

where we can clearly see that, if optimal compression, ρ̃ = |ΨK⟩⟨ΨK |, and we have
F = 1. If we have orthogonal initial and final states, then the fidelity vanishes, F = 0.

We obtain the average fidelity F̄ by weighting over the probability of occurrence of
the possible messages, such that, we have

F̄ =
∑

K

pK⟨ΨK |ρ̃K |ΨK⟩

=
∑

K

pK⟨ΨK |
(
αK |2|τK⟩⟨τK | + |βK |2|R⟩⟨R|

)
|ΨK⟩

=
∑

K

pK |αK |4 +
∑

K

|βK |2
(
|⟨ΨK |R⟩|2

)

Thereby, we have average fidelity tending close to 1 as n → ∞, such that messages
overlap with the typical subspace. Hence, we can code only the typical subspace and
still achieve good fidelity.

156 FURTHER READING & REFERENCES

Further Reading & References
Giuliano Benenti, Giulio Casati, and Giuliano Strini. Principles of quantum computation

and information: Basic tools and special topics, volume 2. World Scientific, 2004.

Emmanuel Desurvire. Classical and quantum information theory: an introduction for the
telecom scientist. Cambridge university press, 2009.

Dan C Marinescu. Classical and quantum information. Academic Press, 2011.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

John Preskill. Lecture notes for physics 229: Quantum information and computation. Cal-
ifornia institute of technology, 16(1):1–8, 1998.

Benjamin Schumacher. Quantum coding. Phys. Rev. A, 51:2738–2747, Apr 1995. doi:
10.1103/PhysRevA.51.2738. URL https://link.aps.org/doi/10.1103/PhysRevA.51.
2738.

https://link.aps.org/doi/10.1103/PhysRevA.51.2738
https://link.aps.org/doi/10.1103/PhysRevA.51.2738

Chapter 11

Exploiting Quantum
Entanglement

“Feeling insignificant because the universe is large has exactly the same logic as
feeling inadequate for not being a cow. Or a herd of cows. The universe is not
there to overwhelm us; it is our home, and our resource. The bigger the better.”

– David Deutsch, The Beginning of Infinity

11.1 Introduction
The superposition principle illustrates the existence of entangled states in two or more
quantum systems. These entangled states are characterised by cross-correlations between
the systems, which any classical theory cannot satisfactorily explain. Such phenomena have
played a central role in the development of quantum theory, beginning with the famous
paradox posed by Einstein, Podolsky, and Rosen (EPR) and followed by the fascinating
work of John Stewart Bell. This paradox exemplifies the seemingly absurd implications
of entanglement when applied to the macroscopic world. The EPR dilemma challenges
classical reasoning by presenting a conflict between the reality of physical properties and
the locality implied by the finite speed of light. This challenge, along with subsequent
developments, has refined our understanding of entanglement. In the field of quantum
information, entanglement is considered a valuable resource to be utilised.

11.2 Local Operations Classical Communication

Say we play a game of quantum state exchange, starting with an entangled pure state |ψ⟩
between us. Suppose we perform arbitrary operations on our local systems and can only
communicate using classical communication channels. This exploration closely links with
ideas of entanglement and a measure to quantify it through the different possible entangle-
ment states |φ⟩ it can transform into. These types of operations with intrinsic richness in

157

158 Local Operations Classical Communication

the class of transformations correspond to the class of local operations and classical commu-
nication (LOCC), which help us disentangle the ideas of bipartite quantum entanglement.

Quantum Teleportation

Quantum teleportation is an important task that can be completed by LOCC. Follow-
ing the convention, this process requires 2 communication nodes or parties, namely
A (Alice) and B (Bob). For simplicity, we only consider transferring a single-qubit
quantum state |ψ⟩C and this requires 3 qubits in total including the pre-shared max-
imally entangled state |Φ+⟩AB = 1√

2 (|00⟩ + |11⟩). Alice holds systems A and C, Bob
holds system B. Note that only quantum information is transferred, not the physical
qubits. The workflow proceeds in the following steps:

1. At the very beginning, the system state can be described as |φ0⟩ = |ψ⟩C ⊗
|Φ+⟩AB = 1√

2

[
α|0⟩(|00⟩ + |11⟩) + β|1⟩(|00⟩ + |11⟩)

]
where the quantum state

Alice want to transmit is |ψ⟩C = α|0⟩C + β|1⟩C and the coefficients α, β ∈ C.

2. Alice applies a CNOT gate, and the resulting state |φ1⟩ = 1√
2

[
α|0⟩(|00⟩ +

|11⟩) + β|1⟩(|10⟩ + |01⟩)
]

3. Alice applies a Hadamard gate, and the system state becomes |φ2⟩ = 1
2
[
α(|0⟩+

|1⟩)(|00⟩ + |11⟩) +β(|0⟩ − |1⟩)(|10⟩ + |01⟩)
]
. The above state can be rearranged

to |φ2⟩ = 1
2
[
|00⟩(α|0⟩+β|1⟩)+ |01⟩(α|1⟩+β|0⟩)+ |10⟩(α|0⟩−β|1⟩)+ |11⟩(α|1⟩−

β|0⟩)
]
.

4. Alice measures both of her qubits in the computational basis
{|00⟩, |01⟩, |10⟩, |11⟩} and send the results m1m2 to Bob with a classical
channel. There are 4 distinct possibilities: m1m2 ∈ {00, 01, 10, 11}. Then,
Bob implements certain operations correspondingly on his qubit based on the
received messages.

• If the measurement result is m1m2 = 00, Bob’s state will be α|0⟩ + β|1⟩,
which is the state Alice want to transmit |ψ⟩C . No operations are needed
and the teleportation is finished.

• If the measurement result is m1m2 = 01, Bob’s state will be α|1⟩ + β|0⟩.
Bob needs to act the X gate on his qubit.

• If the measurement result is m1m2 = 10, Bob’s state will be α|0⟩ − β|1⟩.
Bob needs to act the Z gate on his qubit.

• If the measurement result is m1m2 = 11, Bob’s state will be α|1⟩ − β|0⟩.
Bob needs to act the X gate followed by the Z gate on his qubit.

In short, LOCC transfers quantum information between two spatially separated communi-
cation nodes (only a classical communication channel is allowed) with the help of entangle-
ment. At the heart of entanglement theory is the notion of LOCC, since global quantum
operations are unfeasible in regions separated physically.

Exploiting Quantum Entanglement 159

We formalise the notion of LOCCs through the following theorem.
Theorem 11.2.1. Let the state |φ⟩ be transformed to |ψ⟩ through the virtue of local op-
erations and classical communication. This transformation expects a series of generalised
measurement operators {MA

i } in virtue of A, transferring the measurement to B, who can
transform the state by a pre-assigned unitary Ui to respect the change.

Proof. Say that B performs a measurement with generalised measurement operators MB
j

on a pure state |φ⟩. Let this state be Schmidt-decomposed as

|φ⟩ =
R∑

l=1

√
λl|lA⟩|lB⟩

with the Schmidt decompsition with rank(ρ) = R. In this basis, we can define

MB
j =

R∑

l

R∑

k

Mj,kl|kB⟩⟨lB |

and we denote the specialized operator for A which is the same as the matrix representation
with respect to A’s Schmidt basis as

MA
j ≡

R∑

l

R∑

k

Mj,kl|kA⟩⟨lA|.

Now let B perform the measurement defined by these operators MB
j , with post measurement

state defined by

|ψBj ⟩ ∝ MB
j |φ⟩ =

R∑

l

R∑

k

Mj,kl|kB⟩⟨lB |φ⟩

=
R∑

l

R∑

k

Mj,kl|kB⟩⟨lB |
(R∑

l′=1

√
λl′

A
|l′⟩|l′B⟩

)

=
R∑

l

R∑

k

Mj,kl

√
λl|lA⟩|kB⟩.

The probability of measurement is given by the norm as

pB(j) =
∣∣∣∣MB

j |φ⟩
∣∣∣∣2 =

(R∑

l′

R∑

k′

M∗
j,k′l′

√
λl′⟨l′A|⟨k′

B |
)(R∑

l

R∑

k

Mj,kl

√
λl|lA⟩|kB⟩

)

=
R∑

l

R∑

k

|Mj,kl|2λl,

since we have the states |lA⟩|kB⟩ orthonormal in the Schmidt basis. Similarly, for A, we
have the post-measurement state given by

|ψAj ⟩ ∝ MA
j |φ⟩ =

R∑

l

R∑

k

Mj,kl|kA⟩⟨lA|φ⟩

160 Local Operations Classical Communication

=
R∑

l

R∑

k

Mj,kl|kA⟩⟨lA|
(R∑

l′=1

√
λl′

A
|l′⟩|l′B⟩

)

=
R∑

l

R∑

k

Mj,kl

√
λl|kA⟩|lB⟩.

The probability of measurement is given by the norm as

pA(j) =
∣∣∣∣MA

j |φ⟩
∣∣∣∣2 =

(R∑

l′

R∑

k′

M∗
j,k′l′

√
λl′⟨k′

A|⟨l′B |
)(R∑

l

R∑

k

Mj,kl

√
λl|kA⟩|lB⟩

)

=
R∑

l

R∑

k

|Mj,kl|2λl,

since we have the states |kA⟩|lB⟩ orthonormal in the Schmidt basis.

Thereby, the probabilities are inherently equivalent pA(j) = pB(j) and we have the states
|ψAj ⟩ and |ψBj ⟩ are related by an unitary transformation admitting the change of basis from
|lA⟩|kB⟩ to |kA⟩|lB⟩ as

ψBj = (UAj ⊗ V Bj)ψAj

= (UAj ⊗ V Bj)
R∑

l

R∑

k

Mj,kl

√
λl|kA⟩|lB⟩

=
R∑

l

R∑

k

Mj,kl

√
λl(UAj |kA⟩)(V Bj |lB⟩),

such that UAj |kA⟩ = |lA⟩ and V Bj |kB⟩ = |kB⟩.
Therefore, B performing a measurement described by measurement operators Mj is equiva-
lent to A performing the measurement described by measurement operators UAj MA

j followed
by B performing the unitary transformation V Bj . In summarising, a measurement by B on a
known pure state can be simulated by a measurement by A, up to a unitary transformation
by B.

Further, we note the resulting post-measurement density matrix due to B’s measurement
given by

ρ′ =
MB
j ρM

B†
j

Tr(ρMB†
j MB

j)
∝ MB

j |φ⟩⟨φ|MB†
j

=
(R∑

l

R∑

k

Mj,kl

√
λl|lA⟩|kB⟩

)(R∑

l′

R∑

k′

M∗
j,k′l′

√
λl′⟨l′A|⟨k′

B |
)

=
R∑

l

R∑

k

R∑

l′

R∑

k′

Mj,klM
∗
j,k′l′

√
λlλl′ |lA⟩⟨l′A| |kB⟩⟨k′

B |,

Exploiting Quantum Entanglement 161

which implies, the reduced density matrices are

ρ′A
j = TrB(ρ′

j) =
R∑

l

R∑

l′

R∑

k

Mj,klM
∗
j,kl′

√
λlλl′ |lA⟩⟨l′A|,

ρ′B
j = TrA(ρ′

j) =
R∑

l

R∑

k

R∑

k′

Mj,klM
∗
j,k′lλl|kB⟩⟨k′

B |.

Further, due to A’s measurements, we have

ρ′′
j =

MA
j ρM

A†
j

Tr(ρMA†
j MA

j)
∝ MA

j |φ⟩⟨φ|MA†
j

=
R∑

l

R∑

k

R∑

l′

R∑

k′

Mj,klM
∗
j,k′l′

√
λlλl′ |kA⟩⟨k′

A| |lB⟩⟨l′B |,

which implies, the reduced density matrices are

ρ′′A
j = TrB(ρ′′

j) =
R∑

l

R∑

k

R∑

k′

Mj,klM
∗
j,k′lλl|kA⟩⟨k′

A|,

ρ′′B
j = TrA(ρ′′

j) =
R∑

l

R∑

l′

R∑

k

Mj,klM
∗
j,kl′

√
λlλl′ |lB⟩⟨l′B |.

We note that ρ′′
j and ρ′′

j can be related by the change of basis matrices as before by the
transformation

ρ′
j = (UAj ⊗ V Bj)ρ′′

j (UA†
j ⊗ V B†

j)

= (UAj ⊗ V Bj)
R∑

l

R∑

k

R∑

l′

R∑

k′

Mj,klM
∗
j,k′l′

√
λlλl′ |kA⟩⟨k′

A| |lB⟩⟨l′B |(UA†
j ⊗ V B†

j)

=
R∑

l

R∑

k

R∑

l′

R∑

k′

Mj,klM
∗
j,k′l′

√
λlλl′ U

A
j |kA⟩⟨k′

A|UA†
j V Bj |lB⟩⟨l′B |V B†

j .

such that UAj |kA⟩ = |lA⟩ and V Bj |kB⟩ = |kB⟩. Note that the same does not hold for ρ′A
j and

ρ′B
j defined by the partial trace. In fact, we have ρ′A

j = ρ′′B
j and ρ′B

j = ρ′′A
j . Further, we

note

UAj ρ
′′A
j UA†

j =
R∑

l

R∑

k

R∑

k′

Mj,klM
∗
j,k′lλlU

A
j |kA⟩⟨k′

A|UA†
j ̸= ρ′A

j

V Bj ρ
′′B
j V B†

j =
R∑

l

R∑

l′

R∑

k

Mj,klM
∗
j,kl′

√
λlλl′V

B
j |lB⟩⟨l′B |V B†

j ̸= ρ′B
j .

162 Majorization

11.3 Majorization
Majorization is a purely mathematical concept with surprisingly far-reaching applications.
Consider two vectors x,y ∈ Rn, where we define a sorted (in non-ascending manner) version
of a vector a as a↓, such that

a↓
1 ≥ a↓

2 ≥ · · · ≥ a↓
n

Note that, the sorted vector is a permutation of the elements of v, hence we can relate the
entries of the descending vector through a permutation matrix P ∈ Sn, such that

v↓ = Pv, P ∈ Sn

We define x majorizes y, written as x ≻ y, if

x ≻ y =⇒
k∑

j=1
x↓
j =

k∑

j=1
y↓
j ∀ 1 ≤ k ≤ n

The central insight into majorization theory relies on the idea that

x ≻ y ⇐⇒ y =
∑

j

pjPjx

for a probability distribution pj over the permutation matrices Pj . This can be understood
through the inductive reasoning that, for x ≻ y, the biggest element of x↓ must exceed the
last element of y↓ and the difference of their sums, such that a convex combination of x’s
are obtained for y. Thus, x ≻ y if and only if y can be written as a convex combination of
permutations of x, resulting in a more disordered sense and intermixing the elements of the
vectors.

These matrices, written as a convex combination of permutation matrices, give rise to rich
physical insight. The entries of these matrices are non-negative, and the sums of columns
and rows are identity. Through the implications of Birkhoff’s phenomenal theorem1, we can
rewrite

y = Dx

where D is doubly-stochastic, which has all columns and rows as simultaneously probability
distributions, that is

Dij ≥ 0,
n∑

i=1
Dij =

n∑

j=1
Dij = 1

11.4 Entanglement Transformations
Through the ideas of majorization, we can uncover the intricate aspects of quantum entan-
glement by understanding when we can transform a given copy of a pure bipartite quantum

1The proof of this theorem involves beautiful implications of graph theory and mapping doubly stochastic
matrices to an associated graph, further using a very beautiful concept involving Hall’s marriage theorem.
Refer Hetyei [2016].

Exploiting Quantum Entanglement 163

state |ψ⟩ to another quantum state |φ⟩ using LOCC2. Symbolically, we shall investigate

|ψ⟩ LOCC−−−−→ |φ⟩

As a first ingredient, we shall extend the definition of majorization to general density matri-
ces that are Hermitian. We define majorization of ρψ = TrB{|ψ⟩⟨ψ|} and ρφ = TrB{|φ⟩⟨φ|}
such that

ρψ ≻ ρφ ⇐⇒ λψ ≻ λφ

where λ is a vector containing the eigenvalues.

From the above analogy of doubly stochastic matrices, we proceed to prove that ρψ ≻ ρφ if
and only if we have a stochastic unitary transformation of ρψ to ρφ.

Theorem 11.4.1. For Hermitian operators ρψ, ρφ, we have ρψ ≻ ρφ if and only if there
exists a probability distribution pj and unitary matrices Uj such that

ρφ =
∑

j

pjUjρψU
†
j

Proof. (=⇒): Let ρψ, ρφ. By definition, ρψ ≻ ρφ implies λψ ≻ λφ, hence there exists a
convex combination transformation through permutation matrix Pj ∈ Sn from the above
proposition such that

λφ =
∑

j

pjPjλψ

To transform from the eigenvalues to the density matrix, consider the diagonalisations
through unitary transformations

ρψ = S†
ψΛψSψ, ρφ = S†

φΛφSφ

Now, note that the vectorial equation λφ =
∑

j

pjPjλψ can be expressed as

Λφ =
∑

j

pjPjΛψP†
j

Through the inverse transformation, we recover the density matrices

ρφ = SφΛφS†
φ = Sφ


∑

j

pjPjΛψP†
j


S†

φ

=
∑

j

pjSφPjΛψP†
jS†

φ =
∑

j

pjSφPj(S†
ψρψSψ)P†

jS†
φ

=
∑

j

pj(SφPjS†
ψ)ρψ(SψP†

jS†
φ) ≡

∑

j

pjP̃jρψP̃†
j

2The original idea explaining what tasks may be accomplished using a given physical resource and the
ideas for entanglement transformations was first presented by Michael Nielsen in Nielsen [1999].

164 Entanglement Transformations

where we define P̃j := SφPjS†
ψ, such that P̃†

j = SψP†
jS†

φ. Note that the composition of
unitary matrices with a permutation matrix, still results in another permutation matrix.
We have completed the proof in the forward direction.
(⇐=): Let ρφ =

∑

j

pjUjρψU
†
j . On diagonalising, we have

Λφ = S†
φρφSφ = S†

φ


∑

j

pjUjρψU
†
j


Sφ

=
∑

j

pjS†
φUj(SψΛψS†

ψ)U†
j Sφ

=
∑

j

pj(S†
φUjSψ)Λψ(S†

ψU
†
j Sφ) ≡

∑

j

pjVjΛψV †
j

where we define Vj := S†
φUjSψ and subsequently, we have V †

j = S†
ψU

†
j Sφ, which are unitaries.

Now, the matrix components can be identified for Vj as Vj,kl such that we have

(λφ)k =
∑

jl

pjVj,kl(λψ)lV †
j,lk =

∑

jl

pj |Vj,kl|2(λψ)l

We define a matrix D with entries

Dkl =
∑

j

pj |Vj,kl|2

such that we have
λφ = Dλψ

The entires of D are non-negative by definition, and we have rows and columns summing
up to unitary, thereby, the matrix D is doubly stochastic and we have

ρψ ≻ ρφ

We can now proceed to characterising bipartite entanglement through the notion of ma-
jorization.

Theorem 11.4.2. A bipartite pure state |φ⟩ can be transformed to another pure state |ψ⟩
by LOCC if and only if ρψ ≻ ρφ.

Proof. (=⇒): Suppose |φ⟩ is transformed to state |ψ⟩ by virtue of local operations and
classical communication. By Theorem 11.2.1, we can assume that a bipartite system rep-
resented by A and B, with A performing a measurement with generalised measurement
operators {MA

i }, then sending the result to B, who performs an unitary transformation Ui.
From the post-measurement theorem, we have A with density matrix ρφ transforming to
state ρψ, such that

ρψ =
MA
j ρφM

A†
j

Tr(ρφMA†
j MA

j)

Exploiting Quantum Entanglement 165

Further, to express ρφ as a convex combinations of elements of ρψ, note that we could polar
decompose the matrix MA

j
√
ρφ, such that there exists an unitary Vj that

MA
i

√
ρφ :=

√
MA
i ρφM

A†
i Vi =

√
Tr(ρφMA†

j MA
j)ρψVi = √

piρψVi

where pi is the probability of outcome i. Premultiplying this equation by its adjoint, we
thus realise,

(MA
i

√
ρφ)†MA

i
√
ρφ = (√piρψVi)†(√piρψVi)

=⇒ √
ρφM

A†
i MA

i
√
ρφ = piV

†
i ρψVi

Further, the completeness relation can be implemented for
∑
iM

A†
i MA

i = I, such that
∑

i

piV
†
i ρφVi =

∑

i

√
ρφM

A†
i MA

i
√
ρφ

= √
ρφ

(∑

i

MA†
i MA

i

)
√
ρφ = ρφ

Hence, we have
ρφ =

∑

i

piV
†
i ρψVi

and by Thereorem 11.4.1, we can conclude ρψ ≻ ρφ

(⇐=): Let us assume ρψ ≻ ρφ, then we can pose Theorem 11.4.1, for the existence of a
probability distribution pj and unitary matrices Uj such that

ρφ =
∑

i

piUiρψU
†
i

Motivated by the previous instance, we construct operators MA
j through the action

MA
i

√
ρφ :=

√
Tr(ρφMA†

i MA
i)ρψU†

i = √
piρψU

†
i

These define a set of measurement operators {MA
i } as seen from the completeness relation

∑

i

√
ρφM

A†
i MA

i
√
ρφ =

∑

i

(MA
i

√
ρφ)†(MA

i
√
ρφ)

=
∑

i

(√piρψU†
i)†(√piρψU†

i)

=
∑

i

piUiρψU
†
i = ρφ

Hence, inverting the matrix √
ρφ, we have
∑

i

MA†
i MA

i = ρ
− 1

2
φ ρφρ

− 1
2

φ = I

166 Entanglement Transformations

which proves the completeness relation. Thereby, A performs the measurement described by
operators {MA

i }, obtaining outcome i and corresponding state |ψAi ⟩ ∝ MA
i |φ⟩. The reduced

density matrix corresponding to the state |ψAi ⟩ is ρAψ,i = TrB{|ψAi ⟩⟨ψAi |}, thereby

ρψ,i ∝ TrB{MA
i |φ⟩⟨φ|MA†

i }
= MA

i ρφM
A†
i = (MA

i
√
ρφ)(MA

i
√
ρφ)†

= (√piρψU†
i)(√piρψU†

i)†

= pi
√
ρψU

†
i Ui

√
ρψ = piρψ

Hence, up to normalization ρψ,i ≡ ρψ. Now consider the state |ψAi ⟩, which we can convert
to |ψ⟩ through the action of an unitary Vi such that the density matrices are equivalent.
Thus, we can convert state |φ⟩ to state |ψ⟩ by virtue of LOCC.

Exploiting Quantum Entanglement 167

Further Reading & References
Giuliano Benenti, Giulio Casati, and Giuliano Strini. Principles of quantum computation

and information: Basic tools and special topics, volume 2. World Scientific, 2004.

Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and
William K. Wootters. Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70:1895–1899, Mar 1993. doi: 10.
1103/PhysRevLett.70.1895. URL https://link.aps.org/doi/10.1103/PhysRevLett.
70.1895.

Emmanuel Desurvire. Classical and quantum information theory: an introduction for the
telecom scientist. Cambridge university press, 2009.

Gábor Hetyei. Birkhoff’s theorem, 2016.

Dan C Marinescu. Classical and quantum information. Academic Press, 2011.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

Michael A Nielsen. Conditions for a class of entanglement transformations. Physical Review
Letters, 83(2):436, 1999.

John Preskill. Lecture notes for physics 229: Quantum information and computation. Cal-
ifornia institute of technology, 16(1):1–8, 1998.

https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895

168 FURTHER READING & REFERENCES

Chapter 12

Quantum Error Correction

“To err is human, to forgive divine.”
– Alexander Pope, An Essay on Criticism

12.1 Introduction
Any physical system is prone to errors. Say, suppose we isolate a quantum system from
external decoherence, thus preventing errors from the environment. But, as quantum gates
are unitary transformations chosen from a continuum of possible values, they cannot be
implemented with perfect accuracy. Effects of tiny imperfections in the gate can accumu-
late and cause fatal errors. So we have a significant problem to tackle in quantum computing.

All the algorithms and the usefulness of quantum computers we saw in this text so far are
not of practical utility if the errors cannot be corrected. So our next task is to identify and
correct errors. Where do we start? Drawing inspiration from classical error correction, we
can try to devise quantum error correction.

In the classical framework, we can try repetition to ensure redundancy. The most general
classical single-bit error is the bit-flip 0 ↔ 1. The simplest form of redundancy involves
keeping multiple copies of each bit. For example, if we maintain two copies of each bit, a
0 is represented by the pair 00, while a 1 is represented by the pair 11. If an error occurs
in one of the bits, we might end up with the pairs 01 or 10. Since these pairs should never
occur, encountering them serves as an indication that an error has taken place.

Slightly more technically, the strings 00 and 11 have even parity and if we detect a string
with odd parity, we know that an error has occurred. This is an error-detecting code. But,
not only do we want to detect, but we want to correct errors too. We can do that by
increasing redundancy and keeping 3 copies of each bit: 0 → 000, and 1 → 111. If an error
occurs, we get one of the strings 001, 010, 100, 110, 101, 011. In this case, we correct the
bit by using the majority value, with the rule that the transformation selects the maximum

169

170 Essential features of Quantum Error Correction

occurring value, either 0 or 1. Thereby, we have to check for the value that appears maxi-
mally in the 3 bit string.

Now, a similar act of error correction on a quantum computer seems to be extremely non-
trivial, due to

1. Lack of Repetition: To note if there are errors, we need to inherently measure the state,
which would imply the collapse of the state, and we are restricted by the no-cloning
nature of quantum mechanics from having copies to be redundant.

2. Error Source: Measuring a qubit to know the value can destroy its quantum correla-
tions with other qubits with which it might be entangled. There could be other forms
of errors too, including phase flip or other issues, which are purely quantum in nature.

Despite all these hurdles, there is an enormous conceptual progress and literature on quan-
tum error correction, along with practical implementations, that are raising hopes for prac-
tically useful quantum computers in the near future. Our goal is to sketch Shor’s original
construction of a quantum error correcting code, and show how we avoid the conclusions
that quantum error correction is impossible.

12.2 Essential features of Quantum Error Correction
We shall further build the idea of quantum error codes by studying the analogous classical
error of flipping a qubit, followed by the intrinsic quantum channels. We aim to provide an
independent description and also motivate the error channels under the Kraus operator and
Stabilizer formalism that shall come further.

12.2.1 Bit Flip Code
Consider a case where the error channel flips |0⟩ to |1⟩ or the other way with probability
p. Let us, for simplicity, consider a pure state, but the arguments are analogous for mixed
states. Let ρ = |ϕ⟩ ⟨ϕ| be the initial density matrix of the system. Then, after passing
through the error channel, we assume a noisy ensemble. It is helpful to view the bit-flip
channel as an ensemble with probability 1 − p nothing happens, and with probability p an
X flip occurs. It becomes

ρfinal = (1 − p) |ϕ⟩ ⟨ϕ| + pX |ϕ⟩ ⟨ϕ|X

It must be stressed that the above quantities can be thought of trajectory averaged quantum
operators, of which, even if a specific realisation is picked, the formalism still holds strong.
In any single experimental run, the system follows one definite trajectory; our formalism
projects onto that trajectory, and the recovery is applied conditionally.

If we do not take any additional caution to correct the error, then the probability of loss of
information is

Perror = 1 − ⟨ϕ| ρfinal |ϕ⟩ .

Quantum Error Correction 171

If we consider the initial state to be a pure state |ϕ⟩, then,

Perror = 1 −
(
1 − p+ p| ⟨ϕ|X |ϕ⟩ |2

)

Thus, the probability of failure is of order p. Is there a way to reduce this error?

Having redundancy is a good old method to reduce errors, termed as repetition code. Even
if an error occurs, it is less likely to affect all our redundant qubits. By majority rule, we
can determine and correct the errors. We know that the no-cloning theorem says we cannot
copy a quantum state, but instead we can copy the basis state. Although the no-cloning
theorem forbids a single quantum operation that takes an arbitrary unknown state to two
independent copies, it does not forbid copying the values of a known orthonormal basis.
Concretely, a CNOT does copy computational-basis bits. Consider making three copies of
the basis.

|0⟩ → |000⟩ and |1⟩ → |111⟩
These |0⟩ and |1⟩ are called logical qubit states and the ones without overline, |0⟩ and |1⟩
are physical qubits. Thus, we are encoding a single qubit state in a three-qubit Hilbert space.

In other words, our state |ϕ⟩ is encoded as,

|ϕ⟩ = α |0⟩ + β |1⟩ −→ |ψ⟩ = α |000⟩ + β |111⟩

The circuit in the Fig. 12.1 does exactly this.

|ϕ⟩

|0⟩

|0⟩

Figure 12.1: Copying the basis state

Algebraically, using projectors P0 = |0⟩ ⟨0| and P1 = |1⟩ ⟨1|, the two CNOTs in the encoding
circuit can be written as

CNOT12 =
(
P

(1)
0 ⊗ I(2) + P

(1)
1 ⊗X(2))⊗ I(3),

CNOT23 = I(1) ⊗
(
P

(2)
0 ⊗ I(3) + P

(2)
1 ⊗X(3))

where superscripts indicate on which qubit the operators act.
Start with the encoded input |ϕ⟩ = α |0⟩ + β |1⟩ and two ancillas,

|ψin⟩ = (α |0⟩ + β |1⟩) ⊗ |0⟩ ⊗ |0⟩ = α |000⟩ + β |100⟩

Apply the first CNOT (control qubit 1, target qubit 2)

CNOT12 |ψin⟩ = CNOT12
(
α |000⟩ + β |100⟩

)

172 Essential features of Quantum Error Correction

= α
(
P

(1)
0 ⊗ I(2)) |000⟩ + β

(
P

(1)
1 ⊗X(2)) |100⟩

= α |000⟩ + β |110⟩ .

Now apply the second CNOT (control qubit 2, target qubit 3)

CNOT23
(
α |000⟩ + β |110⟩

)
= α

(
P

(2)
0 ⊗ I(3)) |000⟩ + β

(
P

(2)
1 ⊗X(3)) |110⟩

= α |000⟩ + β |111⟩ .

Thus, the complete encoding yields the expected logical state

|ψ⟩ = α |000⟩ + β |111⟩ .

Now, with three independently noisy physical qubits (each flipped with probability p), every
subset S ⊂ {1, 2, 3} of flipped qubits occurs as a trajectory with probability p|S|(1−p)3−|S|.
If we write XS ≡ ∏

i∈S Xi (so X∅ = I, X{1,2} = X1X2, etc.), the output of the channel is
the classical mixture over all flip patterns,

σ′ =
∑

S⊂{1,2,3}
p|S|(1 − p)3−|S|XS |ψ⟩ ⟨ψ|XS

Grouping terms by the number of flips gives the expanded form

σ′ = (1 − p)3 |ψ⟩ ⟨ψ| + p(1 − p)2
3∑

i=1
Xi |ψ⟩ ⟨ψ|Xi

+ p2(1 − p)
∑

1≤i<j≤3
XiXj |ψ⟩ ⟨ψ|XiXj + p3 X1X2X3 |ψ⟩ ⟨ψ|X1X2X3,

where the combinatorial factors are the binomial probabilities: choose which qubits flipped,
each chosen flip contributes a factor p and each non-flip a factor 1 − p. This map can be
shown to be trace-preserving.

Even though we encoded the logical state across three physical qubits, a direct projective
measurement on any single physical qubit would reveal (and thus destroy) part of the logi-
cal superposition. The trick of error correction is to perform collective parity checks which
commute with the logical operator and therefore reveal only which flip-pattern (if any) oc-
curred, without collapsing the logical amplitudes in |ψ⟩ = α |000⟩ + β |111⟩.

Consider the operators Z1Z2 and Z2Z3 and their action on the following states. The Ta-
ble 12.1 shows some possible states the three qubits may be in after going through the error
channel. Notice that both Z1Z2 and Z2Z3 do not change the state of any of these. In other
words, the tabulated states are eigenstates of Z1Z2 and Z2Z3 whose eigenvalues are helping
in locating the errors. Such measurements is called a syndrome measurement.

It is important that our measurement to diagnose the bit flip is a collective measurement
on two qubits at once. We infer the value of Z1Z2 and Z2Z3 but get to learn nothing about
the separate values of Z1, Z2 or Z3, doing so would damage the encoded state.

Quantum Error Correction 173

State Z1Z2 Z2Z3 Action to correct the error
α |000⟩ + β |111⟩ +1 +1 I
α |100⟩ + β |011⟩ −1 +1 X1
α |010⟩ + β |101⟩ −1 −1 X2
α |001⟩ + β |110⟩ +1 −1 X3
α |110⟩ + β |001⟩ +1 −1 X3

Table 12.1: Action of Z1Z2 and Z2Z3 on various three-qubit states

We can perform the above pair of Z-measurements using the circuit 12.2 with the help of
two additional ancilla qubits. Note that the two CNOTs outside the box is the one we saw
earlier that copies the basis state.

Encoding

Error Channel Syndrome Measurement

|ϕ⟩

|0⟩

|0⟩

|0⟩

|0⟩

Figure 12.2: Syndrome measurements for bit flip error

After performing Z1Z2 and Z2Z3 we get 4 possible final states (syndromes) for all possible
bit flip errors (i.e not only single bit flip).
Notice both Z1Z2 and Z2Z3 have +1 eigenvalue for the no-error state α |000⟩ + β |111⟩ and
the three-flip error state X1X2X3 |ψ⟩ = α |111⟩ + β |000⟩.

σ0 = (1 − p)3|ψ⟩⟨ψ| + p3X1X2X3|ψ⟩⟨ψ|X1X2X3

σ1 = (1 − p)2pX1|ψ⟩⟨ψ|X1 + (1 − p)p2X2X3|ψ⟩⟨ψ|X2X3

σ2 = (1 − p)2pX2|ψ⟩⟨ψ|X2 + (1 − p)p2X1X3|ψ⟩⟨ψ|X1X3

σ3 = (1 − p)2pX3|ψ⟩⟨ψ|X3 + (1 − p)p2X1X2|ψ⟩⟨ψ|X1X2

Now depending on the Z1Z2, Z2Z3 values we operate with X1, X2 or X3. After which the
state becomes

σ′
0 = (1 − p)3|ψ⟩⟨ψ| + p3X1X2X3|ψ⟩⟨ψ|X1X2X3

σ′
1 = (1 − p)2p|ψ⟩⟨ψ| + (1 − p)p2X1X2X3|ψ⟩⟨ψ|X1X2X3

174 Essential features of Quantum Error Correction

σ′
2 = (1 − p)2p|ψ⟩⟨ψ| + (1 − p)p2X1X2X3|ψ⟩⟨ψ|X1X2X3

σ′
3 = (1 − p)2p|ψ⟩⟨ψ| + (1 − p)p2X1X2X3|ψ⟩⟨ψ|X1X2X3

The final density matrix is σ′ =
∑3
k=0 σ

′
k

Does this redundancy actually help? Calculating the Perror, we find that the error probability
has indeed reduced to p2 from p (note p < 1).

Perror = 1 − ⟨ψ|σ′ |ψ⟩
= p2(3 − 2p)

(
1 − | ⟨ψ|X1X2X3 |ψ⟩ |2

)

= p2(3 − 2p)
(
1 − |α†β + β†α|2

)

Encoding

Error Channel Syndrome Measurement

Correction Decoding

|ϕ⟩

|0⟩

|0⟩

|0⟩

|0⟩

Figure 12.3: Bit Flip Error Correction Circuit

Instead of a bit flip of a single qubit, consider rotation of a single qubit around the x axis,
by some angle θ ∈ R, such that the unitary operator responsible is U = ei

θ
2X = cos θ2 I +

i sin θ
2X which can be seen as superposition of correctable errors. In this case, the error

correction procedure, specifically the syndrome measurement, digitizes the superposition
and discretizes the error into one of two cases. Syndrome decoding of the quantum repetition
code illustrates how the original objections to the possibility of quantum error correction
are overcome. It is not necessary to clone the qubit state, and the decoding procedure
does not damage the superposition of the quantum information. Furthermore, the decoding
procedure does discretize all errors which are superpositions of I and X to a probabilistic
mixture of either I or X. The drawback is that this repetition code only protects against
single-qubit errors of this form, and also assumes uncorrelated errors among qubits.

Multi-qubit error: If we have a multi-qubit error, our scheme of error correction might
not work, as illustrated below. Suppose two physical qubits suffer bit-flips: qubits 1 and 2
are flipped, i.e. the error operator is X1X2. The post-error state is

αX1X2 |000⟩ + βX1X2 |111⟩ = α |110⟩ + β |001⟩ .
The repetition-code syndrome is obtained from the parity checks Z1Z2 and Z2Z3. Evaluating
their eigenvalues on the components, for |110⟩: Z1Z2 |110⟩ = (+1) |110⟩, Z2Z3 |110⟩ =
(−1) |110⟩; and for |001⟩: Z1Z2 |001⟩ = (+1) |001⟩, Z2Z3 |001⟩ = (−1) |001⟩.

Quantum Error Correction 175

Hence the two-qubit error state X1X2 |ψ⟩ has syndrome (Z1Z2, Z2Z3) = (+1,−1). But that
very same syndrome is produced by a single flip on qubit 3. Thus the syndrome measurement
cannot distinguish the two situations X1X2 versus X3.
In practice, the decoder maps the observed syndrome (+1,−1) to the correction operator
X3. Applying that correction to the true error X1X2 yields α |111⟩ + β |000⟩. Instead of
restoring the state, the recovery process produces a logical error. This is because parity
(syndrome) measurements only detect which pattern of parity occurred, not the exact set of
flipped qubits. Two flips in the same parity pattern can be indistinguishable from a different
single flip; applying the single-flip correction then produces a logical error. This is why the
three-qubit repetition code cannot correct arbitrary two-qubit errors.

Effect of bit flip on Bloch sphere: Recall that an arbitrary density matrix can be writ-
ten as 1

2 (I + r⃗ · σ⃗), where r⃗ is the Bloch vector and σ⃗ is Pauli vector and Tr(ρ2) = 1+|r⃗|2

2 .
Thus, there is a vector r⃗ = (r1, r2, r3) in the Bloch sphere corresponding to every density
matrix.

When ρ goes through a bit flip channel, it becomes pρ+ (1 − p)XρX. As

ρ = I + r1X + r2Y + r3Z

2 and XρX = I + r1X − r2Y − r3Z

2

The Bloch vector changes after going through the bit flip channel.

ρ −→ pρ+ (1 − p)XρX

(r1, r2, r3) 7→ p(r1, r2, r3) + (1 − p)(r1,−r2,−r3)

The new coordinates are,

r′
1 = pr1 + (1 − p)r1 = r1

r′
2 = pr2 + (1 − p)(−r2) = (2p− 1)r2

r′
3 = pr3 + (1 − p)(−r3) = (2p− 1)r3

Thus, the x-coordinate remains unchanged, and the y and z coordinates get squeezed by a
factor of 2p− 1. This is depicted in the Fig. 12.4. As the norm of the Bloch vector |r⃗| can
only decrease in this process, the trace, Tr(ρ2), can only decrease or stay the same.
An interesting thing happens at p = 0.5. Both y and z coordinates vanish and the Bloch
sphere becomes a projection onto the x axis.

12.2.2 Phase Flip Code
Here the error channel flips the phase of the qubit with probability p. In other words the
initial density matrix ρ = |ϕ⟩ ⟨ϕ| becomes, ρfinal = pρ+ (1 − p)ZρZ.

Can one modify the bit flip circuit to account for phase flips? Recall that X = HZH. So,
if we apply Hadamard gates across the error channel, then any phase flip will appear like
bit flips, and the same circuit used for bit flips can be used for phase flips as well.

176 Essential features of Quantum Error Correction

−1

0

1−1
−0.5

0
0.5

1

−1

0

1

x

y

z

−1

0

1−1
−0.5

0
0.5

1

−1

0

1

x

y

z

Figure 12.4: Effect of bit flip channel on the Bloch sphere, with p = 0.2

Encoding

Error Channel Syndrome Measurement

Correction Decoding

|ϕ⟩ H H

|0⟩ H H

|0⟩ H H

|0⟩ H H

|0⟩ H H

Figure 12.5: Phase Flip Error Correction Circuit

Quantum Error Correction 177

One example of encoding, correcting and decoding where the error occurs on the middle
qubit is,

α |0⟩ + β |1⟩ encoding−−−−−→ α |000⟩ + β |111⟩ H−→ α |+ + +⟩ + β |− − −⟩ error−−−→ α |+ − +⟩ + β |− + −⟩

α |+ − +⟩ + β |− + −⟩ H−→ α |010⟩ + β |101⟩ correction−−−−−−−→ α |000⟩ + β |111⟩ decoding−−−−−−→ α |0⟩ + β |1⟩

Effect of Phase Flip Channel on the Bloch Sphere: In the case of a phase flip
channel, the following is the effect on the Bloch sphere,

ρ −→ pρ+ (1 − p)ZρZ

(r1, r2, r3) 7→ p(r1, r2, r3) + (1 − p)(−r1,−r2, r3)
= ((2p− 1)r1, (2p− 1)r2, r3))

as ZXZ = −X and ZY Z = −Y , thus ZρZ flips the sign of both r1 and r2. Overall, the
z-coordinate remains the same, and x and y coordinates get squeezed. Similar to what we
saw in the case of bit flip code, at p = 0.5. Both x and y coordinates vanish, and the Bloch
sphere becomes a projection onto the z axis.

−1

0

1−1
−0.5

0
0.5

1

−1

0

1

x

y

z

−1

0

1−1
−0.5

0
0.5

1

−1

0

1

x

y

z

Figure 12.6: Effect of phase flip channel on the Bloch sphere, with p = 0.2

12.2.3 Bit-Phase Flip Code
A combination of bit and phase flip gives XZ = −iY . Its action on the Bloch sphere is
shown in Fig. 12.7.

ρ −→ pρ+ (1 − p)Y ρY
(r1, r2, r3) 7→ p(r1, r2, r3) + (1 − p)(−r1, r2,−r3)

= ((2p− 1)r1, r2, (2p− 1)r3))

178 Essential features of Quantum Error Correction

To handle such and more general types of errors, where both bit and phase flips can occur,
we need a more involved error correction code. One such code is Shor’s code, which we will
see in the subsequent sections.

−1

0

1−1
−0.5

0
0.5

1

−1

0

1

x

y

z

−1

0

1−1
−0.5

0
0.5

1

−1

0

1

x

y

z

Figure 12.7: Effect of bit-phase flip (Y-flip) channel on the Bloch sphere, with p = 0.2

12.2.4 Depolarizing Channel

This channel represents a more general, symmetric model of noise. Intuitively, it describes
a process where, with probability 1 − p, the qubit is left untouched, and with probability
p, its state is completely randomized to the maximally mixed state, I/2. This "scrambling"
effectively destroys any information stored in the qubit.
The transformation is thus described by the map:

ρfinal = (1 − p)ρ+ p
I
2

At first glance, this transformation appears to be affine (of the form Aρ + B) rather than
strictly linear, due to the presence of the pI/2 term, which is independent of ρ. This might
seem to conflict with the description of quantum operations as linear maps. The resolution
lies from the insight that Tr(ρ) = 1, thereby, ρ+XρX + Y ρY + ZρZ = 2I, such that,

ρfinal = (1 − p)ρ+ p

[
1
4 (ρ+XρX + Y ρY + ZρZ)

]

=
(

1 − 3p
4

)
IρI + p

4XρX + p

4Y ρY + p

4ZρZ

confirming its linearity.

Quantum Error Correction 179

Effect of Depolarizing Channel on the Bloch Sphere: We can most easily see the
geometric effect using the initial affine form. Recall ρ = 1

2 (I + r⃗ · σ⃗).

ρfinal = (1 − p)
[

1
2 (I + r⃗ · σ⃗)

]
+ p

I
2

= 1
2 [I + (1 − p)(r⃗ · σ⃗)]

The new Bloch vector r⃗′ is thus r⃗′ = (1 − p)r⃗.

(r1, r2, r3) 7→ ((1 − p)r1, (1 − p)r2, (1 − p)r3)

−1

0

1−1
−0.5

0
0.5

1

−1

0

1

x

y

z

−1

0

1−1
−0.5

0
0.5

1

−1

0

1

x

y

z

Figure 12.8: Effect of depolarizing channel on the Bloch sphere, with p = 0.2

Thus, the depolarizing channel uniformly shrinks the Bloch vector by a factor of (1 − p).
The entire Bloch sphere contracts isotropically (equally in all directions) towards the center
r⃗ = 0, which represents the maximally mixed state I/2. In the extreme case where p = 1
(complete depolarization), the new vector is r⃗′ = 0, and all input states are mapped to the
center, completely destroying any quantum information.

12.3 Shor’s Code
We saw the bit flip and the phase flip code. Building on this, can one design an error
correction scheme that can correct any arbitrary error on a single qubit? Let us try to build
one such code. The critical idea is to realize that concatenating the bit flip and phase flip
repetition codes produces a code which can correct any single-qubit error.

Like the earlier examples, we can start by encoding our physical qubits into a certain num-
ber of logical qubits. Suppose the state of the encoded qubit is |ψ⟩ = α |0⟩ + β |1⟩, and
after the action of the noise channel it becomes ε(|ψ⟩ ⟨ψ|) =

∑
iEi |ψ⟩ ⟨ψ|E†

i . We saw

180 Shor’s Code

that physically we can interpret the action of the error channel as changing the initial
state of the system to Ei |ψ⟩ ⟨ψ|E†

i with a certain probability. Thus, focusing on one term
Ei |ψ⟩ ⟨ψ|E†

i , notice that as the Pauli matrices, {I, X, Y, Z}, forms a basis we can write
Ei = ci0I + ci1X + ci2XZ + ci3Z. Thus the un-normalized state Ei |ψ⟩ can be written as
superposition of I |ψ⟩, X |ψ⟩, XZ |ψ⟩ and Z |ψ⟩. Thus, if we have an error correction code
that can correct just X and Z type errors in a single qubit, we can use it to correct Ei. As
measuring the error syndrome will collapse the state to one of the above Pauli basis states,
and recovery can be done appropriately.

Now let us see how to construct a code that can take care of both bit and phase flip of a
single qubit. Naturally, let us just try to combine the codes we already saw, by first encoding
using the phase flip code and then the bit flip code on each of the phase flip encoded qubits.
This will give a 9-qubit encoding for a single qubit.

|0⟩ phase flip−−−−−−→ |+ + +⟩ bit flip−−−−→
(|000⟩ + |111⟩√

2

)(|000⟩ + |111⟩√
2

)(|000⟩ + |111⟩√
2

)
≡ |0⟩

|1⟩ phase flip−−−−−−→ |− − −⟩ bit flip−−−−→
(|000⟩ − |111⟩√

2

)(|000⟩ − |111⟩√
2

)(|000⟩ − |111⟩√
2

)
≡ |1⟩

The circuit to construct the above encoding is again just a combination of the bit flip and
phase flip circuit as shown in Fig. 12.9.

This method of stacking and constructing an encoding is called concatenation and is a useful
trick to construct new codes from old ones.

After encoding is done, how to correct this error? Again, we can just extend the syndrome
measurements of the bit flip code and phase flip code as shown in the Table 12.2 and Ta-
ble 12.3.

The complete circuit for Shor’s code is given in Fig. 12.10. Note that, unlike bit flip and
phase flip code, this circuit does not have a measurement operator, as measurements can be
equivalently converted to control not gates 5.5.

It is important to note what type of errors Shor’s code can correct and cannot. If we cluster
each of the nine qubits into sets of three, then Shor’s code can correct:

• Single qubit bit flip error in any 1 out of 3 qubits in a cluster.

• Phase flip in 1 cluster.

The combination of the above two covers all types of single-qubit errors. However, Shor’s
code cannot correct for:

• Two bit flips in a single cluster.

Quantum Error Correction 181

Phase Flip Encoding Bit Flip Encoding

|ϕ⟩ H

|0⟩

|0⟩

|0⟩ H

|0⟩

|0⟩

|0⟩ H

|0⟩

|0⟩

Figure 12.9: Concatenation of bit flip and phase flip encoding

Error Z1Z2 Z2Z3 Z4Z5 Z5Z6 Z7Z8 Z8Z9 Action to correct the error
I +1 +1 +1 +1 +1 +1 I
X1 −1 +1 +1 +1 +1 +1 X1
X2 −1 −1 +1 +1 +1 +1 X2
X3 +1 −1 +1 +1 +1 +1 X3
X4 +1 +1 −1 +1 +1 +1 X4
X5 +1 +1 −1 −1 +1 +1 X5
X6 +1 +1 +1 −1 +1 +1 X6
X7 +1 +1 +1 +1 −1 +1 X7
X8 +1 +1 +1 +1 −1 −1 X8
X9 +1 +1 +1 +1 +1 −1 X9

Table 12.2: Syndrome measurements to detect single bit flip errors. (Note: Z4Z5, Z5Z6,
etc. are shown for clarity, representing the 6 stabilizers for the 3 bit-flip blocks).

182 Shor’s Code

Error X1X2X3X4X5X6 X4X5X6X7X8X9 Action
I +1 +1 I

Z1/Z2/Z3 −1 +1 Z1/Z2/Z3
Z4/Z5/Z6 −1 −1 Z4/Z5/Z6
Z7/Z8/Z9 +1 −1 Z7/Z8/Z9

Table 12.3: Syndrome measurements to detect single phase flip errors

Phase Flip Encoding
Error Channel

DecodingBit Flip Encoding

|ϕ⟩ H H |ϕ⟩

|0⟩

|0⟩

|0⟩ H H

|0⟩

|0⟩

|0⟩ H H

|0⟩

|0⟩

Figure 12.10: Shor’s Error Correction Code

Quantum Error Correction 183

Suppose our logical state is |ψ⟩ = α |0⟩ + β |1⟩, and the system suffers a two-qubit
bit-flip error E = X1X2 in the first cluster (qubits 1-3).
The state becomes E |ψ⟩ = α(X1X2 |0⟩) + β(X1X2 |1⟩).
The decoder checks the bit-flip syndromes for the first block: Z1Z2 and Z2Z3. The
error state in this block is ∝ X1X2(|000⟩ ± |111⟩) = (|110⟩ ± |001⟩). Measuring the
stabilizers on this error state, both components give the same syndrome: (+1,−1).
The syndrome (+1,−1) for the first block corresponds to a single bit-flip on qubit 3.
The decoder, assuming a single error is most probable, applies the recovery operation
R = X3.
The resulting operator F = X1X2X3 is not the identity. It is, in fact, the logical Z
operator for the first block, z1.
This operator commutes with all the bit-flip stabilizers (e.g., (X1X2X3)(Z1Z2) =
(X1Z1)(X2Z2)X3 = (−Z1X1)(−Z2X2)X3 = Z1Z2X1X2X3) and is thus undetectable
by them. It also commutes with the phase-flip stabilizers.
Applying this correction has finalized a logical error on the first block, corrupting the
encoded state |ψ⟩ instead of restoring it.

• Phase error in two different clusters.
Suppose the system suffers a phase-flip error on qubit 1 (first cluster) and qubit 4
(second cluster).
The error operator is E = Z1Z4. The state is E |ψ⟩ = (Z1Z4) |ψ⟩, with decoder
operators M1 = X1X2X3X4X5X6 and M2 = X4X5X6X7X8X9.
For M1, The error E = Z1Z4 anticommutes with X1 and X4. Since it anticommutes
with an even number (two) of the X operators in M1, it commutes with M1 overall.
M1E = M1(Z1Z4) = (X1Z1)(X4Z4) · · · = (−Z1X1)(−Z4X4) · · · = Z1Z4M1 = EM1.
The syndrome is +1. For M2, The error E = Z1Z4 anticommutes with X4 but
commutes with all other operators in M2. Since it anticommutes with an odd number
(one) of the X operators, it anticommutes with M2 overall. M2E = M2(Z1Z4) =
Z1(X4Z4) · · · = Z1(−Z4X4) · · · = −EM2. The syndrome is −1.
The measured syndrome is (+1,−1) and identifies this syndrome as corresponding to a
phase error in the third cluster (e.g., Z7, Z8, or Z9). The decoder applies the recovery
operation R = Z7. The total operator applied to the state is F = R ·E = Z7(Z1Z4) =
Z1Z4Z7.
The operator F = Z1Z4Z7 is a logical bit-flip, X, for the Shor code. The correction
has combined with the two-qubit error to produce a logical X operation, E |ψ⟩ →
F |ψ⟩ = X |ψ⟩. This is a catastrophic failure of the code, as the encoded information
has been flipped.

The keen reader would have wondered and probably noticed a deep connection running
through our examples. In the bit-flip code, our logical states |0⟩ = |000⟩ and |1⟩ = |111⟩
were precisely the states that were stabilized, with eigenvalue +1; by the syndrome mea-
surement operators Z1Z2 and Z2Z3. The same principle held for the phase-flip code and its
X1X2, X2X3 operators, and indeed for the more complex Shor code.

184 Formalisms

This observation is far from a coincidence; it is the very essence of the code. The protected
subspace Span{|0⟩ , |1⟩} is defined as the simultaneous +1 eigenspace of these operators.
This raises a powerful question: Instead of constructing codes by hand and then finding
their syndrome operators, could we reverse the process? What if we start by choosing a
set of commuting operators (drawn from the Pauli group, naturally) and simply define our
code space as the subspace they all stabilize?

This is precisely the idea behind the stabilizer formalism. It provides an elegant and powerful
algebraic framework for describing, constructing, and analyzing quantum error-correcting
codes.

12.4 Formalisms
We rigorously introduce the Kraus operator formalism to describe the error channels and
understand their correctability. Further, since it is a lot more convenient to describe the
Shor code and many other quantum error-correcting codes in terms of their stabilizers, we
shall delve into the depths of the formalism.

12.4.1 Kraus Operator in Error Correction
The concept of Kraus operator was introduced in the Sec. 9.2. For an interacting system
with initial independent density matrix ρ, we have the operator-sum representation,

ρ′ =
∑

k

EkρE
†
k

where Ek is the Kraus operator on the principal system Hilbert space. Physically, the action
of quantum operation is equivalent to taking the system from ρ and randomly placing it in
normalized 1

Tr(EkρE
†
k

)EkρE
†
k with probability Tr(EkρE†

k), which is similar to the effect of a
noisy classical communication channel.
The above shows that given an interacting quantum system, it gives rise to an operator-sum
representation. But is the converse true? Given a set of operators {Ek}, can we associate
it with a model environmental system and dynamics that gives the corresponding operator-
sum representation, where the dynamics is either unitary or projective measurements? The
answer turns out to be yes!1

We shall now see a few examples of errors and a method for correcting them. Given the
above operator language, one can now associate Kraus operators (as shown in Table 12.4)
with all the error correction codes seen so far.
Revisiting the earlier examples, the Kraus Operators for the relevant codes are given in
Table 12.4.

Quantum Error Correction Condition in Operator Formalism A natural question
to ask is, can any form of error be corrected? Here comes the power of operator represen-
tation, which can characterize correctable errors.

1Proof for this can be found in the Nielsen, M.A. and Chuang, I.L. [2011].

Quantum Error Correction 185

Error Type Kraus Operator Syndrome Bloch Sphere: (r1, r2, r3) →

Bit Flip {√
1 − pI,√pX} Z1Z2 and Z2Z3 (r1, (1 − 2p)r2, (1 − 2p)r3)

Phase Flip {√
1 − pI,√pZ} X1X2 and X2X3 ((1 − 2p)r1, (1 − 2p)r2, r3)

Bit-Phase Flip {√
1 − pI,√pY } Z1Z2 and Z2Z3 ((1 − 2p)r1, r2, (1 − 2p)r3)

Table 12.4: Summary of the error codes with corresponding Kraus operators. (Note: The
Bloch sphere transformations assume the standard channel ρ′ = (1 − p)ρ + pEρE†, which
may differ from the convention used in Sec 2.)

Theorem 12.4.1. Let C be a quantum code and Π projector onto C. Suppose ε (noise) is a
quantum operator with operation elements {Ei}, then the necessary and sufficient condition
for the existence of an error-correcting operation R correcting ε on C is that

ΠE†
iEjΠ = mijΠ

for some Hermitian matrix m = [mij]. The above condition is called quantum error correc-
tion condition or the Knill-Laflamme (KL) condition. The operator elements {Ei} for the
noise ε are called errors, and if such R exists, we say {Ei} constitutes a correctable set of
errors.

Proof. We will prove the sufficiency by constructing R given the KL condition.

(⇒): Suppose {Ei} satisfies KL condition, m = [mij] is Hermitian so it can be diagonalized
Λ = U†mU . Define Fk ≡ ∑

i UikEi. As Fk is a sum of unitaries times operator elements,
we know that {Fk} is also a set of operator elements of ε.
Substituting Fk in KL condition we get,

ΠF †
kFlΠ =

∑

ij

U†
kiUjlΠE

†
iEjΠ

=
∑

ij

U†
kiUjlmijΠ =

∑

ij

U†
kimijUjlΠ

=ΛklΠ

Since FkΠ is a linear map, we can find a polar decomposition

FkΠ = Uk
√

ΠF †
kFkΠ =

√
ΛkkUkΠ

since Π2 = Π ⇒
√

Π = Π, and for some unitary Uk.
We have FkΠ =

√
ΛkkUkΠ, implying, UkΠU†

k = FkΠU†
k√

Λkk
Now, define Πk ≡ UkΠU†

k , then,

ΠlΠk = Π†
lΠk = (U†

l ΠUl)(UkΠU†
k) = U†

l ΠF †
l√

Λll
FkΠU†

k√
Λkk

= U†
l√
Λll

ΠF †
l FkΠ U†

k√
Λkk

= 0

186 Formalisms

Note that ΠF †
l FkΠ = ΛlkΠ and it is 0 when l ̸= k. Thus, Πk ’s can be thought of as

orthonormal projective measurements.

Now the syndrome measurement can be defined as the projectors Πk augmented by an
additional projector, if necessary, to satisfy the completeness relation. Let Π′ = I−∑k Πk.
Therefore, {Fk} being equivalent to {Ek}, has the action on the code space, as

FkΠ =
√

ΛkkUkΠ

Note that we can get back to the code space by applying U†
k .

Thus, the combined detection-recovery step corresponds to the quantum operator

R(σ) =
∑

k

U†
kΠkσΠkUk

Note that, we have

U†
kΠkFl

√
ρ = U†

kΠ†
kFlΠ

√
ρ = U†

kUkΠF †
kFlΠ√

Λkk
√
ρ

= δkl
√

ΛkkΠ√
ρ

Therefore, we have

R(ε(ρ)) =
∑

kl

U†
kΠkFlρF

†
l ΠkUk =

∑

kl

δklΛkkρ ∝ ρ

as required by the recovery operation.

(⇐): Suppose {Ei} is a set of errors which is perfectly correctable by an error-correction
operation R with operation elements {Rj}. Define the quantum operator εc(ρ) ≡ ε(ΠρΠ)
where ΠρΠ is in the code space.

We thereby have, R (εc(ρ)) ∝ ΠρΠ, expanding this out
∑
ij RjEiΠρΠE†

iR
†
j = CΠρΠ, where

C is constant.
Thereby, {RjEi} is identical to a single operator element

√
CΠ, such that RkEiΠ = CkiΠ,

taking adjoint ΠE†
iR

†
k = C†

k,iΠ, therefore ΠE†
iR

†
kRkEjΠ = C†

k,iCk,jΠ
As R is trace-preserving

∑
k R

†
kRk = 1, therefore,

∑

k

ΠE†
iR

†
kRkEjΠ = ΠE†

iEjΠ =
∑

k

C†
k,iCk,jΠ = mijΠ

where mij is Hermitian. This matches with the KL condition.

Applying the KL criterion to the Shor code

For Shor’s code, we have the correctable error set, described by E = {I, Xi, Yi, Zi}
for i = 1, 2, . . . , 9. We choose the code basis as |0⟩ and |1⟩. It is easy to note that

Quantum Error Correction 187

⟨0|E†
iEj |1⟩ = 0, since the basis kets are constructed orthogonally, and there is no

transformation connecting the two.

The significant condition to check is for whether ⟨0|E†
iEj |0⟩ = ⟨1|E†

iEj |1⟩, where
usually both are not zero. For Ei = Zα, Ej = Zβ , we have both equal to one, and
similarly for other combinations of Zα’s. For any other operator, both quantities are
equal to zero. Thereby, the KL condition is satisfied for Shor’s.

12.4.2 Stabilizer Formalism for Error Correction
The stabilizer formalism offers a streamlined approach to identifying and correcting errors.

12.4.2.1 Pauli Group

As seen before, the four Pauli operators, I, X, Z, Y allow us to express the four possible
effects of the environment on a qubit. These operators form a group G = P and they
exhibit several nice properties:

• Anticommuting
{X,Z} = {Y, Z} = {X,Y } = 0

• P 2 = I, for all P ∈ P

• Span the space of 2 × 2 matrices, describing the transformation of a single qubit.

Further, two Pauli matrices are equivalent if σj = cσi, where c = ±1,±i, which lets us define
the set of equivalence classes of Pauli operators [P]. Note that the set of Pauli operators, P,
is not an Abelian group. However, the set Π of equivalence classes, [P], of Pauli operators,
also called the projective Pauli group, forms an Abelian group.

We further define the 1-qubit Pauli group, P1, which consists of the Pauli operators,
I, X, Y, Z, together with the multiplicative factors, ±1,±i, as

P1 := {±I,±iI,±X,±iX,±Z,±iZ,±Y,±iY }

whose cardinality is |P1| = 16. The members of the 1-qubit Pauli group are unitary, either
commute or anticommute, and are either Hermitian or anti-Hermitian. Note that the gen-
erators of P1 are G1 = {X,Z, iI}.

Generalizing our ideas, the n-qubit Pauli group Pn consists of the 4n tensor products
I, X, Y, Z and an overall phase of ±1,±i, thereby, the group has 4×4n = 4n+1 elements (can
be verified for |P1| = 41+1 = 16). One element of the group is an n-tuple, the tensor product
of n one-qubit Pauli operators, and can be used to describe the error operator applied to an
n-qubit register. We define the weight of such an operator in Pn to be the number of tensor
factors that are not equal to I.

188 Formalisms

12.4.2.2 Stabilizer Subgroup
The stabilizer formalism is a concise way to describe a quantum error-correcting code using
a set of quantum operators. Assume that the m codewords of a code are represented by the
vectors |ψ⟩, which are n-qubit registers. We have identified a set of q operators Mj that
enable us to detect errors that may affect any of the codewords. In this context, the term
detect refers to a measurement process that does not disclose any information about the
actual state, but rather indicates whether the codeword has been affected by errors.

The stabilizer S of a quantum code is an Abelian subgroup of the n-qubit Pauli group,
with generators {M1,M2, . . . } where Mi stabilises the code words with positive eigenvalue.
The code space C is the simultaneous +1 eigenspace of all generators. The codewords are
thereby the eigenvectors satisfying Mj |ψ⟩ = (+1)|ψ⟩ for all j and all |ψ⟩ ∈ C. For an error
|φ⟩ = Eα|ψ⟩ due to the error operator Eα, the stabilizers act as syndrome measurements.
If Eα anticommutes with Mj , then Mj |φ⟩ = (−1)|φ⟩, revealing a non-trivial syndrome.

The normalizer N (S) is the set of elements that fix the stabilizer code under conjugation.
Further, S ⊂ N (S) is a normal subgroup. Since the elements of the normalizer N (S) move
codewords around in the code space, they are the logical operators. Only the elements
E ∈ N (S) − S act on the codewords nontrivially.

The centralizer C(S) is the set of elements in Pn that commute with all the elements of the
stabilizer S. Since S can be shown to be an Abelian subgroup, it can be shown that the
normalizer equals the centralizer, N (S) = C(S).

12.4.2.3 Quantum Error Correction Condition in stabilizer Formalism
Consider |ψ⟩ as a codeword in the code space C, with a set of stabilizer generators Mj ∈ S,
such that

Mj |ψ⟩ = (+1)|ψ⟩ for all Mj ∈ S and |ψ⟩ ∈ C

The errors, E = {E1, E2, . . . }, affecting a codeword are also a subgroup of the n-qubit Pauli
group, E ∈ Pn, with each error operator Ei being a tensor product of n Pauli matrices.
The weight of an error operator is equal to the number of errors affecting a quantum word,
thus, the number of Pauli operators other than I in this n-dimensional tensor product. Note
that the correctable error operators anticommute with at least one of the generators of the
stabilizer group S. That is, for a given E, there exists some Mj such that

Mj(E|ψ⟩) = (−1)E(Mj |ψ⟩) = (−1)E|ψ⟩

since {Mj , E} = 0. Therefore, to detect errors, we have to compute the eigenvalues of the
generators and identify those with an eigenvalue of −1.

For the stabilizer S, with n − k generators, then it encodes k qubits, and code distance d,
which accounts for the smallest number of qubits that can be in error such that the error
is undetectable by the code2. We thereby, compactify, as a [n, k, d] stabilizer code, with n
being the length of a codeword (number of physical qubits), k the number of information

2We assume that the identity operator is a correctable error.

Quantum Error Correction 189

Pn

N (S) ≡ C(S)

S

Figure 12.11: Error pattern classification for stabilizer codes. Correctable Errors: E ∈
Pn − N (S) ≡ Pn − C(S). Non Detectable Errors: E ∈ C(S) − S.

190 Formalisms

symbols (logical qubits), and d being the distance of the code, such that the cardinality
of the stabilizer is |S| = 2n−k. Rather than specifying the entire group, we only need its
n − k independent generators. Each generator imposes a constraint that effectively halves
the dimension of the available Hilbert space. Thus, starting with n physical qubits (a 2n
dimensional space), these n− k constraints define a 2n−k times smaller subspace of dimen-
sion 2k, perfectly suited to encode k logical qubits.

The code’s power is its distance d, which measures its resilience. An error E is detected
if it anti-commutes with a stabilizer, producing a measurable syndrome. An error is unde-
tectable if it commutes with all stabilizers. The set of all such commuting operators is the
normalizer, N (S).

Undetectable errors fall into two categories: Trivial Errors: If the error E is an element of
the stabilizer itself (E ∈ S), it is harmless as it leaves the code states unchanged; Logical
Errors: If the error E is in the normalizer but not the stabilizer (E ∈ N (S)−S), it acts as a
non-trivial operation on the encoded logical qubits (e.g., a logical bit-flip X). This corrupts
the information without being flagged.

The code distance d is therefore the minimum weight (the number of qubits it acts on
non-trivially) of an operator in this set of dangerous logical errors, N (S) − S. This is the
smallest error that can silently damage the encoded data. In terms of the KL conditions,
ΠEΠ ̸= CΠ for some c for an operator E ∈ Pn of weight d. Thus, a code of distance d can
correct all Pauli errors of weight no larger than ⌊d−1

2 ⌋, since the projection of any two such
errors has weight twice that of it.

12.4.3 Quantum Hamming Bound
A natural question to ask is how efficiently we can make the error correction code in terms
of the number of physical qubits used. Can we have an arbitrarily small number of physical
qubits? If not, what is the smallest number of physical qubits needed?

To answer the above questions, let’s suppose a non-degenerate code is used to encode k-
qubits in n-qubits such that it can correct errors on any subset of t or fewer qubits. Suppose
j ≤ t errors occur, then the number of possible locations where this can happen is

(
n
j

)
. If in

each of these locations, the errors can be one of X,Y , or Z, then the total number of errors
that may occur on t or fewer qubits is

∑t
j=0

(
n
j

)
3j .

As the code is non-degenerate, to encode k qubits we need a 2k-dimensional space. Thus,
each of the above errors must correspond to an orthogonal 2k-dimensional subspace. As
we are encoding with n qubits, this number should be less than 2n, the dimension of the
physical qubit states. Therefore, we have,

t∑

j=0

(
n

j

)
3j2k ≤ 2n

The above condition is known as the quantum Hamming bound.

Quantum Error Correction 191

For correcting a single qubit error, we have k = 1 and t = 1. On substituting this, the
quantum Hamming bound gives us (1 + 3n)21 ≤ 2n, or 1 + 3n ≤ 2n−1. This inequality is
first satisfied for n = 5. Thus, to answer the question asked at the start of this section, to
correct an arbitrary single-qubit error, we need at least 5 physical qubits. Do we have an
error correction code that works on exactly 5 physical qubits? The answer turns out to be
yes!

The Perfect Code

The five-qubit code encodes k = 1 logical qubit into n = 5 physical qubits and has a
distance d = 3, allowing it to correct t = ⌊(3−1)/2⌋ = 1 arbitrary single-qubit error.
Its stabilizer S is defined by n− k = 4 generators

M1 = X1Z2Z3X4I5

M2 = I1X2Z3Z4X5

M3 = X1I2X3Z4Z5

M4 = Z1X2I3X4Z5

The corresponding logical operators that act on the protected code space C are X =
X1X2X3X4X5 and Z = Z1Z2Z3Z4Z5. X and Z both commute with all stabilizer
generators (e.g., X anticommutes twice with M1) and that they anticommute with
each other, as required for a logical qubit.

A Not-So-Perfect Code

The 5-qubit code is special because it’s perfect. The 7 qubit Steane code also
encodes k = 1 logical qubit and corrects t = 1 single-qubit error with code distance
d = 3. Unlike the 5-qubit code, the Quantum Hamming Bound is not saturated.

The Steane code’s stabilizer S is defined by n− k = 6 generators. They are grouped
into X-type and Z-type, which allows for separate correction of bit-flips and phase-
flips:

M1 = Z1Z3Z5Z7 M4 = X1X3X5X7

M2 = Z2Z3Z6Z7 M5 = X2X3X6X7

M3 = Z4Z5Z6Z7 M6 = X4X5X6X7

The logical operators are also beautifully symmetric

X = X1X2X3X4X5X6X7 Z = Z1Z2Z3Z4Z5Z6Z7

Measuring the Z-type stabilizers provides the syndrome for X errors, and measuring
the X-type stabilizers provides the syndrome for Z errors.

192 Surface Codes

12.5 Surface Codes

We now move to a particularly important and promising class of stabilizer codes: surface
codes. These codes get their name from their layout on a two-dimensional surface or lattice,
where qubits are typically placed on the edges (or vertices/faces) and stabilizer generators
are defined as local operators acting on small, neighboring sets of qubits.

The essential idea is to encode logical information non-locally in the global topological
properties of this surface. This topological protection is what grants them their resistance
to local errors and their high error threshold, making them a leading candidate for building
fault-tolerant quantum computers.

12.5.1 Toric Code
Imagine a square lattice, but with its end edges identified and seen as a torus. This is
extremely similar to periodic boundary conditions in other aspects of physics, where we
exploit the periodicity of the square lattice with endpoints identified. We can imagine
assigning operators along the individual points of the lattice. Fig. 12.12 represents the toric
code setup, where solid lines gives the lattice, and on each edge of the lattice lies a blue dot
which represents a qubit. For an n × n lattice, we have 2n2 qubits since we can imagine
each square hosting 1

2 × 4 qubits, summing on each of its edges.
We define two types of stabilizer generators on the lattice as, Star operators Qs and Pla-
quette operators Bp as

Qs =
∏

j∈Star(s)

Xj , Bp =
∏

j∈Plaquette(p)

Zj ,

where we note that Qs and Bp individually commute, and also commute with each other
for any pair of s, p. This can be explicitly seen through noting

[
Qs,Qs′

]
=


 ∏

j∈Star(s)

Xj ,
∏

k∈Star(s′)

Xk




=
∏

j∈Star(s),k∈Star(s′)

[
Xj , Xk

]
= 0,

since the individual X operators are independent on different locations s and s′ given by
Xj and Xk respectively, and the commutator product simplifies. Similarly,

[
Bp,Bp′

]
=


 ∏

j∈Plaquette(p)

Zj ,
∏

k∈Plaquette(p′)

Zk




=
∏

j∈Plaquette(p),k∈Plaquette(p′)

[
Zj , Zk

]
= 0.

Quantum Error Correction 193

Qs

Bp

Figure 12.12: Toric Code

194 Surface Codes

Further, we note the interesting relation,

[
Qs,Bp

]
=


 ∏

j∈Star(s)

Xj ,
∏

k∈Plaquette(p)

Zk




=
∏

j∈Star(s),k∈Plaquette(p)

[
Xj , Zk

]

where we analyse the cases. When Xj and Zk are widely separated as in Fig. 12.12, we
note the independency and thereby,

[
Xj , Zk

]
= 0. But, when we have overlapping cases for

Xj and Zk as in Fig. 12.13. Here, note that there always exist two overlaps, say i1 and i2.
Hence, we have the product

[
Qs,Bp

]
∼
[
. . . Xi1Xi2 . . . , . . . Zi1Zi2 . . .

]
, where these overlaps

cancel each other out through their commutation relations. Since the overlap between the
star and plaquette operator always ends up in overlap on even number of qubits, it is easy
to show that

[
Qs,Bp

]
= 0.

Thereby, it is interesting to note that there are n2 Star operators defined at each Qs for the
X operator, and similarly, n2 Plaquette operators at each Bp for the Z operator. But these
aren’t all independent and are connected by a simple relation. Note that, in the product
of all Star and Plaquette operators, we encounter the X and Z respectively twice since
adjacent stars and neighbouring Plaquettes share a common qubit. This results in products
of X2 = I and Z2 = I, across all qubits, resulting in

∏

s

Qs =
∏

s


 ∏

j∈Star(s)

Xj


 = I,

∏

p

Bp =
∏

p


 ∏

j∈Plaquette(p)

Zj


 = I.

Thereby, we have one of the Star and Plaquette operators being determined through the
others, leading to 2(n2 − 1) = 2n2 − 2 independent stabilizer operators in total. Thereby,
we encode in dimension 22n2−(2n2−2) = 22, that is, we encode 2 qubits into 2n2 qubits.

We further define the set of logical operators as cycles on the torus, as in Fig. 12.14, defined
as cycles since the edges are identified. Precisely, we have

Xi =
∏

s∈Vertical(i)

Qs, Zi =
∏

p∈Horizontal(i)

Bp,

The size of the logical operators encodes the property of the code distance, which is seen to
be n since there are n independent qubits in each of the definitions of the cyclic operators.
We see that the maximum weight of the cyclic operators described above is along the length
of the torus, such that we have code distance n, which scales with the square root of the
number of qubits encoded.

12.5.2 XZZX Code
While the Toric code provides a scalable, topological approach, it is instructive to also study
small-qubit codes that demonstrate different properties. The XZZX code encodes k = 2 log-

Quantum Error Correction 195

Qs

Bp

Figure 12.13: Overlapping Toric Code

196 Surface Codes

Zi

X i

Figure 12.14: Operators on the Torus

Quantum Error Correction 197

ical qubits into n = 4 physical qubits, and has a distance d = 2.

The code is defined by an Abelian stabilizer group S generated by n − k = 4 − 2 = 2
generators, given by

M1 = X1Z2Z3X4

M2 = Z1X2X3Z4

such that [M1,M2] = 0. The code space C is the 2-qubit (2k = 4) dimensional subspace
stabilized by these generators.

The corresponding logical operators (elements of N (S) − S) can be defined in pairs. A
consistent set is X1 = X1X2, Z1 = Z1Z3 and X2 = X1X3, Z2 = Z1Z2.

We must check that these operators behave as logical qubits. First, they must all com-
mute with the stabilizers (which they do, e.g., [X1,M1] = [X1X2, X1Z2Z3X4] = 0 as X2
anticommutes with Z2). Second, they must obey the correct logical commutation relations:

[X1, Z1] ̸= 0, [X2, Z2] ̸= 0 (12.1)
[X1, X2] = [Z1, Z2] = [X1, Z2] = [X2, Z1] = 0 (12.2)

For example, [X1, Z1] = [X1X2, Z1Z3]. X1 anticommutes with Z1, while all other pairs
commute, resulting in an overall anticommutation, as required. However, [X1, Z2] =
[X1X2, Z1Z2]. Here, X1 anticommutes with Z1 and X2 anticommutes with Z2. With two
anticommutations, the operators commute overall.

The minimum weight of a non-trivial logical operator is 2 (e.g., X1), which confirms the
code distance d = 2.

198 FURTHER READING & REFERENCES

Further Reading & References
Victor V. Albert and Philippe Faist, editors. The Error Correction Zoo. Online, 2025. URL

https://errorcorrectionzoo.org/.

Giuliano Benenti, Giulio Casati, and Giuliano Strini. Principles of quantum computation
and information: Basic tools and special topics, volume 2. World Scientific, 2004.

Emmanuel Desurvire. Classical and quantum information theory: an introduction for the
telecom scientist. Cambridge university press, 2009.

Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quantum computa-
tion. American Mathematical Soc., 2002.

Dan C Marinescu. Classical and quantum information. Academic Press, 2011.

Tushant. Mittal. Quantum LDPC Codes: An exposition of recent results. 2024.

Nielsen, M.A. and Chuang, I.L. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

John Preskill. Lecture notes for physics 229: Quantum information and computation. Cal-
ifornia institute of technology, 16(1):1–8, 1998.

Joseph M. Renes. Quantum Error Correction. 2024.

Bei Zeng, Xie Chen, Duan-Lu Zhou, Xiao-Gang Wen, et al. Quantum information meets
quantum matter. Springer, 2019.

https://errorcorrectionzoo.org/

	I Foundations
	Mathematical Background
	Probability Theory
	Linear Algebra
	Group Theory
	Fourier Transformation
	Group Theoretic Perspective on Fourier Transform
	Number Theoretic Foundations
	Linear and Semidefinite Programming

	Physics Formalism
	Postulates of Quantum Mechanics
	State Vector
	Entanglement
	Measurement
	State Vector vs Density Matrix
	Density Matrix Formalism
	Reduced Density Operator

	Theory of Computation
	Turing Machine
	Circuit Model of Computation
	RAM Model of Computation
	Bird's Eye View of Complexity Theory
	Church-Turing Thesis

	Overview of Quantum Computer and Quantum Information
	Qubit
	Multi Qubits
	Gates and Circuits
	Reversible Computation
	Quantum Parallelism
	No-Cloning Theorem
	Building a Qubit

	II Quantum Computing
	Basic Quantum Algorithms
	Some Basic Functions
	Deutsch’s Problem
	Deutsch–Jozsa Problem
	Bernstein Vazirani Problem
	Simon's Problem

	Quantum Fourier Transform and Shor's Algorithm
	RSA Cryptography
	Overview of Shor's Algorithm
	Shor's Algorithm
	How complex is Shor's Algorithm?
	Quantum Phase Estimation

	Grover's Search Algorithm
	Introduction
	Query Model of Computation
	Grover's Search Algorithm
	Query complexity of Grover's Search Algorithm

	Variational Quantum Algorithms
	Variational Theorem
	Quantum Approximation Optimisation Algorithm
	QAOA for Graph Theoretical Optimisation Problems
	Max Cut
	Max Independent Set (MIS)

	III Quantum Information
	Generalising Operations
	Preliminaries
	Kraus Representation
	Generalised Measurements

	Quantum Entropy
	Shannon Entropy
	Classical Data Compression
	Von Neumann Entropy
	Quantum Data Compression

	Exploiting Quantum Entanglement
	Introduction
	Local Operations Classical Communication
	Majorization
	Entanglement Transformations

	Quantum Error Correction
	Introduction
	Essential features of Quantum Error Correction
	Shor's Code
	Formalisms
	Surface Codes

